
HiddenCPG: Large-Scale Vulnerable Clone Detection Using
Subgraph Isomorphism of Code Property Graphs

Seongil Wi
School of Computing,

KAIST

Sijae Woo
School of Computing,

KAIST

Joyce Jiyoung Whang
School of Computing,

KAIST

Sooel Son
School of Computing,

KAIST

ABSTRACT
A code property graph (CPG) is a joint representation of syntax, con-
trol flows, and data flows of a target application. Recent studies have
demonstrated the promising efficacy of leveraging CPGs for the
identification of vulnerabilities. It recasts the problem of implement-
ing a specific static analysis for a target vulnerability as a graph
query composition problem. It requires devising coarse-grained
graph queries that model vulnerable code patterns. Unfortunately,
such coarse-grained queries often leave vulnerabilities due to faulty
input sanitization undetected. In this paper, we propose HiddenCPG,
a scalable system designed to identify various web vulnerabilities,
including bugs that stem from incorrect sanitization. We designed
HiddenCPG to find a subgraph in a target CPG that matches a
given CPG query having a known vulnerability, which is known
as the subgraph isomorphism problem. To address the scalability
challenge that stems from the NP-complete nature of this problem,
HiddenCPG leverages optimization techniques designed to boost
the efficiency of matching vulnerable subgraphs. HiddenCPG found
89 confirmed vulnerabilities including 42 CVEs among 2,464 po-
tential vulnerabilities in 7,174 real-world CPGs having a combined
total of 1 billion nodes and 1.2 billion edges.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
clone detection; web vulnerabilities; subgraph isomorphism

ACM Reference Format:
Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son. 2022. Hid-
denCPG: Large-Scale Vulnerable Clone Detection Using Subgraph Isomor-
phism of Code Property Graphs. In Proceedings of the ACM Web Conference
2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3485447.3512235

1 INTRODUCTION
PHP is a popular server-side web programming language. Approxi-
mately 80% of web servers among the Alexa top 10 million websites
use PHP to implement various services, including content manage-
ment systems (CMSs), social forums, and official homepages [7]. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512235

recent years, PHP open-source software has made tremendous and
rapid progress, reaching almost 140K projects on GitHub [5].

However, security threats that these PHP applications impose
have been exacerbated as vulnerable GitHub projects have become
increasingly accessible. Developers often copy and paste portions
of other software with or without modification, a practice known as
code cloning [31, 45]. This tendency is known to introduce vulner-
abilities, such as SQL injection (SQLi) or cross-site scripting (XSS),
by propagating buggy code [32, 46, 48].

Previous studies have proposed various static data flow analyses
to identify web vulnerabilities [12, 21, 26, 27, 37, 43, 58, 60, 62].
One notable approach that Yamaguchi et al. [64] introduced is the
code property graph (CPG), a joint representation of the target
application’s syntax, control flows, and data flows. This graph-level
representation facilitates the static detection of various types of
vulnerabilities by defining graph queries, instead of implementing
static analyses tailored to each vulnerability type. Backes et al. [12]
have extended CPG to cover PHP applications. They demonstrated
the efficacy of CPGs in finding 196 vulnerabilities in 1,854 PHP
applications by devising a graph query tailored to various types of
vulnerabilities, including SQLi, XSS, and shell command injection.

Finding vulnerabilities using CPGs requires composing coarse-
grained graph queries that model the characteristics of tainted
information flows. Devising such queries demands the expertise
to capture the commonalities of vulnerable code patterns in CPGs.
Backes et al. [12] composed a coarse-grained query that captures
tainted information flows that traverse no input sanitizers. There-
fore, their approach does not address vulnerabilities that stem from
faulty sanitization checks. Identifying such bugs requires program-
ming a series of fine-grained queries, each of which reflects different
incorrect sanitization logic. It is thus inevitable for experts to pro-
gram these queries, requiring significant engineering efforts.
Contributions. In this paper, we propose HiddenCPG, a clone
detection system designed to identify various web vulnerabilities,
including bugs that stem from incorrect sanitization. We tackle
the problem of identifying vulnerabilities due to faulty sanitiza-
tion by matching a given vulnerable CPG to a subgraph in the
CPG of a target PHP application. We thus recast the problem of
statically identifying vulnerabilities as the subgraph isomorphism
problem [57], in which we find an isomorphic subgraph in the
target CPG matching a given vulnerable CPG.

Addressing the subgraph isomorphism problem entails two tech-
nical challenges. (1) This problem is of an NP-complete nature; thus,
it becomes computationally infeasible to find matching subgraphs
when the target and query CPGs have a large number of nodes and
edges. (2) The representations of CPG nodes need to be appropri-
ately abstracted in order to facilitate the matching of subgraphs
that share the same semantics with a few syntactic differences.

755

https://doi.org/10.1145/3485447.3512235
https://doi.org/10.1145/3485447.3512235

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son

<?php
function foo() {
 $input = $_GET["input"];
 bar($input);
}
function bar($input) {
 if(isset($input)) {
 $content = "<p>".$input."</p>";
 echo $content;
 }
}
?>

CALL

True

False

C
C

EXITENTRY

input

_GET "input"

DIM bar

input

ARGS

ECHO EXIT

input

ENTRY PARAMS

isset

input

ARGS

content CONCAT

input"<p>" "</p>"

content

ASSIGN

FUNC_FOO

PREDIC

IF

FUNC_BAR

ASSIGN

STMT

AST Edge
CFG Edge

PDG Edge
CG Edge

Code Sample1
2
3
4
5
6
7
8
9
10
11
12

CALL(b)(a) (c)

Dinput

(d) (e)
Dinput

(f) (g)

Dinput Dcontent

Figure 1: CPG for the vulnerable code sample in the box on the left.

To address the scalability problem, we apply three optimization
techniques introduced in Cloned Buggy Code Detector (CBCD) [36].
These optimization techniques reduce the complexity and the num-
ber of nodes and edges in a target CPG, which greatly boosts
the efficiency of subgraph matching. To address the second chal-
lenge, we propose several methods of abstracting CPG nodes for
built-in calls and string constants. We further demonstrate the ef-
ficacy of this representation in matching semantically identical
but syntactically different code clones in CPGs. We empirically
select an appropriate level of abstraction for CPG nodes, includ-
ing string constants holding regular expressions and contexts of
printing user input, for robust matching of vulnerable code clones.
As proof of concept, we implement and release HiddenCPG at
https://github.com/WSP-LAB/HiddenCPG.

We evaluated HiddenCPG on 7,174 PHP web applications from
highly rated CMS projects in PHP with more than 100 stars on
GitHub [3]; HiddenCPG discovered a total of 2,464 potential vul-
nerabilities, including 39 due to incorrect sanitization. Among 103
sampled reports, we confirmed the exploitability of 89 vulnerabili-
ties with 14 false positives. For the confirmed vulnerabilities, we
have received 42 CVE identifiers. These reported vulnerabilities
include XSS, SQLi, unrestricted file upload (UFU), and local file
inclusion (LFI) vulnerabilities, demonstrating that HiddenCPG is
able to detect various web vulnerabilities. The experimental results
also demonstrate that the suggested abstraction of CPG nodes con-
tributed to finding 1,445 more vulnerabilities than did the exact
clone matching method.

Regarding system performance, HiddenCPG completed the sub-
graph matching of 739K pairs consisting of 7,174 projects and 103
queries in 16 days and 12 hours; 97% of the subgraph matching at-
tempts were finished within 10 seconds. Each PHP project required
an average of 199 seconds for vulnerable subgraph matching. Note
that the average numbers of nodes and edges in the CPG of each
project were 149K and 178K, respectively. These results demonstrate
that finding matching subgraphs in CPGs from large real-world
PHP applications is feasible with precision and efficiency.

2 CODE PROPERTY GRAPH
Yamaguchi et al. [64] proposed the idea of the code property graph
(CPG), a general representation of a large amount of mined source
code. In the mined code, auditors search for code patterns that
match a given graph query. The authors proposed leveraging a
CPG to identify security bugs in C programs by defining a set of
graph queries, each of which models a vulnerable code pattern.

Backes et al. [12] extended CPG to support PHP applications.
They designed a PHP CPG to include four different representations

of a target application: abstract syntax tree (AST), control flow
graph (CFG), program dependency graph (PDG), and call graph
(CG). For each function, all nodes of the respective AST become the
nodes of a CPG. Each node is connected via different types of edges,
each of which defines the relationship of the connection. These
edges are categorized into four types: AST, CFG, PDG, and CG. AST
edges model a hierarchical decomposition of each statement node.
CFG edges represent a program’s control flow among statement
nodes. PDG edges represent data-flow dependencies (i.e., D) and
control-flow dependencies (i.e., C) among statements. CG edges
connect invocations with their corresponding callees’ entry nodes.

Figure 1 shows a simplified example of the PHP CPG for the code
sample shown on the left side. This PHP code sample is vulnerable
to a reflected XSS attack because the $input variable in Line (Ln) 3
holding user input is printedwithout sanitization in Ln 9. To identify
such a vulnerability, Backes et al. [12] ran two consecutive queries
on a target CPG: (1) one indexing critical function calls and (2) the
other identifying critical data flows. We illustrate each query and
how they are applied in the example above.
Indexing function calls. This query identifies a set of AST nodes
that correspond to a predefined security-critical function call. For
an XSS vulnerability, the authors identified all nodes representing
echo or print statements. By executing this query, they retrieved
the (g) ECHO node from the CPG in Figure 1.
Identifying critical data flows. This query performs a backward
traversal to obtain a list of interprocedural data dependence flows
from the external inputs to a security-critical function call. Consider
the CPG in Figure 1. Starting from the (g) node, the designed query
traverses backward along the D edge to the (d) PARAMS node of the
function bar ((g)→ (f)→ (e)→ (d)). In the case of encountering
the PARAMS node, the proposed approach travels to the (b) CALL
node that represents the call site of the function bar in the function
foo ((d)→ (c)→ (b)). From the (b) node with the argument $input,
the tool recursively travels the D edges until it meets the node
that receives user-controllable inputs ((b)→ (a)). Since there are
no appropriate sanitizers for preventing XSS vulnerabilities (i.e.,
htmlspecialchars, htmlentities, or strip_tags) on the way,
the proposed approach decides that the extracted flows (i.e., flows
from (a) to (g)) have an XSS vulnerability.

3 MOTIVATION
Backes et al. [12] demonstrated the promising efficacy of lever-

aging CPGs to find XSS, SQLi, and other security vulnerabilities
in PHP applications. From 1,854 GitHub projects, they identified
196 vulnerabilities over an execution time of 6 days and 13 hours,
demonstrating the scalability of the proposed static approach. For

756

https://github.com/WSP-LAB/HiddenCPG

HiddenCPG: Large-Scale Vulnerable Clone Detection Using Subgraph Isomorphism of Code Property Graphs WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

1 <?php if (isset($_GET["message"])) {
2 $message = $_GET["message"]; } ?>
3 <html>
4 ...
5 <?php $message = htmlspecialchars($message);?>
6 ...
7 <p><a href="<?php echo $message ?>">Content</p>
8 </html>

Figure 2: Example snippet of incorrect input sanitization.

each type of vulnerability, they defined a graph traversal rule to
search for vulnerable data-flow paths in a target CPG. The graph
traversal rule serves as a graph query that finds vulnerable patterns
in the CPG. However, devising a query for each vulnerability type
is often challenging since it requires modeling the general charac-
teristics of the target vulnerability. Therefore, such a query is often
designed to be coarse-grained to identify all potential vulnerabili-
ties, minimizing false negatives.

Unfortunately, there are cases that require fine-grained queries
to find vulnerabilities, such as identifying XSS vulnerabilities due
to incorrect sanitization logic. For example, the aforementioned
queries of Backes et al. [12] are unable to identify XSS vulnerabilities
that arise from incorrect input sanitization. The query confirmed
the existence of sanitization built-in calls in critical data flows while
not validating the correctness of sanitization logic. Figure 2 shows
a representative example of incorrect input sanitization, causing
an XSS vulnerability. This PHP application incorrectly sanitizes
user input via $_GET["message"]. It attempts to remove all script
tags by invoking htmlspecialchars() in Ln 5, which converts
special characters. Unfortunately, an attacker is able to inject the
JavaScript snippet of javascript:alert("xss") directly into an
event handler attribute (e.g., onload), thereby eliminating the need
for injecting special escape characters.
Motive. Devising multiple context-aware queries to find diverse
vulnerable patterns can address the aforementioned limitation.
However, programming multiple fine-grained queries that model
the correctness of diverse sanitization logics does not scale well; it
requires significant engineering effort and domain-specific exper-
tise to manually model the correct sanitization logic for each of the
diverse sanitizing functions.

We argue that in a given CPG, finding a subgraph that matches
the CPG with a known vulnerability makes it possible to address
the aforementioned shortcoming. Instead of programming a correct
query for each different type of vulnerability, we propose identify-
ing subgraphs that are isomorphic to known vulnerable CPGs.

Consider a directed labeled graph T , denoted as (V ,E,L), where
V is the set of vertices, E ⊆ (V ×V) is the set of directed edges, and
L is a labeling function that maps a node or an edge to a label. This
T is a target CPG, andQ is a query CPG with a known vulnerability.
We propose to find all subgraphs inT that matchQ , which is a task
known as the subgraph isomorphism problem [57].

Definition 1 (Subgraph Isomorphism Problem). Given a query
graph Q = (V ,E,L) and a target graph T = (V ′,E ′,L′), the sub-
graph isomorphism problem is to find an injective (one-to-one)
functionM : V → V ′ such that (1) ∀u ∈ V ,L(u) ⊆ L′(M(u)), and (2)
∀(ui ,uj) ∈ E, (M(ui),M(uj)) ∈ E ′, andL(ui ,uj) = L′(M(ui),M(uj)).

GivenQ andT , the subgraph isomorphism problem is to identify
all subgraphs T ′ of T such that T ′ is isomorphic to Q . Specifically,

Vulnerable
applications

Source: Ln 4
Sink: Ln 12

PHP
Target

applications

CPG query Q

System CPG T

If Q ⊂ T

Normalizing
CPG

Extracting
CPG query Subgraph

isomorphism
matching

Phase I
Building CPG

Phase II
Pruning CPG

Phase III
Matching Subgraphs

PHP

Converting
Code to CPG

CPG query Q

Optimized Ts

Figure 3: Overview of HiddenCPG.

solving this problem means finding a one-to-one function such
that each node and edge in Q has the matching node and edge,
respectively; each one-to-one mapping has the same label.

3.1 Technical Challenges
Identifying web vulnerabilities by addressing the subgraph isomor-
phism problem entails two technical challenges: (1) addressing the
scalability issue in matching subgraphs and (2) finding an optimal
graph abstraction to match given query graphs.
Scalability problem. The subgraph isomorphism problem is NP-
complete. Its required exponential running time has hindered its
application to graphs with a large number of nodes and edges.
The most efficient subgraph isomorphism algorithm [17] requires
O(N !N) time, where N is the number of all nodes and edges from
both graphs under matching. Consider that a query graph Q has
20 nodes and 30 edges consisting of 10 lines of code (LoC), and a
target graphT has 200 nodes and 300 edges consisting of 100 (LoC).
The number of required comparisons to find matching subgraphs is
O(7.03 × 101,272) (N = 550). Note that the CPGs in our benchmark
consist of 149K nodes and 178K edges on average. Therefore, the
direct application of a known algorithm [17, 53] does not scale well.
Graph abstraction. Determining a proper level of abstraction for
CPG nodes and edges directly affects the accuracy in matching
isomorphic subgraphs. For example, to decide whether given Q
and T ′ are semantically identical, it is necessary to use the same
representation for nodes that perform the semantically identical
operations. Assume two CPGs of echo $a and print $b statements.
Both of them perform the semantically same operation; however,
their corresponding nodes in the CPGs may appear differently due
to their different names for built-in calls and variables. Therefore,
it is paramount to determine an optimal level of abstraction that
is resilient to common modifications in code while preserving the
vulnerable condition.
Our approach. We present HiddenCPG, a vulnerable clone detec-
tion system using the subgraph isomorphism. Assume two CPGs:
one is the system CPG (T) from a target PHP application under test
and the other is a CPG query (Q) from a known vulnerable PHP
snippet. Given a system CPG (T) and CPG query (Q), HiddenCPG
identifies T ′ ∈ T such that T ′ is isomorphic to Q . Depending on
the vulnerability type of Q , HiddenCPG is capable of detecting
unknown web vulnerabilities that stem from the absence of input
sanitization (w/o san.) and incorrect sanitization (w/ faulty san.).

HiddenCPG addresses the two aforementioned technical chal-
lenges. For the former challenge, we extend the optimization tech-
niques introduced in Cloned Buggy Code Detector (CBCD) [36],
which contributes to boosting the efficiency of matching subgraphs.

757

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son

⊂

print "<input>";

$search =
$_POST["search"];

hasData($search)

$now = time();

$content =
htmlspecialchars($search);

include("header.html");

print $now;

print "<body><a title
='example' href='";

echo $content;

Print "'>" . $now .
"</body></html>";

AST Edge
(omitted)

CFG Edge PDG Edge
(omitted C edge)

CG Edge
(omitted)

D
D

D

norm_sink

ASSIGN

ASSIGN

norm_sink

D

D

isset($_GET["message"])

$messgae =
$_GET["message"];

"<html>\n...\n"

$message =
htmlspecialchars($message);

"...\n<p><a href=""

echo $message;

"">Content</p>\n</html>"

PREDIC

ASSIGN

norm_sink

ASSIGN

norm_sink

norm_sink

norm_sink

PREDIC

norm_sink

norm_sink

norm_sink

norm_sink

norm_sink

ASSIGN

ASSIGN

norm_sink

D

D

$search =
$_POST["search"];

$content =
htmlspecialchars($search);

print "<body><a title
='example' href='";

echo $content;

Normalized CPG CPG query Q (Normalized) System CPG T
(a)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(b)

(e)

(h)

(i)

Code Sample1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Vulnerable PHP snippet
<?php

print "<input>";
$search = $_POST["search"];
if (hasData($search) {
 $now = time();
}
$content = htmlspecialchars($search);
include("header.html");
print $now;
print "<body><a title='example' href='";
echo $content;
Print "'>" . $now . "</body></html>";

?>

Normalizing CPG Extracting CPG query

(k)

(l)

(m)

(n)

(o)

(p)

(q)

Location of the input source: Line 4
Location of the sink function: Line 12

D

D
ASSIGN

(b)

Figure 4: Running example of building CPG, presenting only the top-level AST nodes representing the execution order of the
statements and the corresponding code for simplicity. We omit AST edges, CG edges, and the C edges of the PDG.

For the latter challenge, we propose several ways of representing
CPG nodes involving built-in calls and string constants and empir-
ically demonstrate their efficacy in finding various types of data-
and control-flow vulnerabilities.

To the best of our knowledge, no previous studies have sought to
find isomorphic patterns in CPG representations. Previous studies
of code similarity-based analysis or clone detection [24, 25, 28, 29,
42, 63] have focused on code-level detection, which is not directly
applicable to finding isomorphic CPG subgraphs. Therefore, Hid-
denCPG is a complementary vulnerability detection tool to the
previous detection work of Backes et al. [12], thus decreasing false
negatives that the previous study overlooked.

4 DESIGN
4.1 Overview
Figure 3 depicts the overall workflow of HiddenCPG. Given a set of
target PHP applications and known vulnerable PHP code snippets,
Phase I generates CPGs and produces two lists. One holds system
CPGs from the target PHP applications, each graph of which serves
T . The other contains CPG queries from the vulnerable snippets,
each graph of which servesQ (§4.2). This phase is a one-time setup
procedure. For each pair of (T ,Q), Phase II prunes and splitsT using
optimization techniques (§4.3). This step reduces the complexity of
matching subgraphs. For each optimized pair (T ,Q), Phase III iden-
tifies T ′ ∈ T that is isomorphic to the vulnerable code presentation
Q using a subgraph isomorphism algorithm (§4.4).
Collecting vulnerable code. To prepare a set of vulnerable PHP
snippets, we collected vulnerable applications with vulnerability-
specific search keywords from the list of known CVEs [1] and com-
mit messages from GitHub projects [2]. In particular, we searched
for vulnerable code with w/o san. using keywords, such as “XSS”,
“SQL Injection”, and “LFI”. We also collected vulnerable code due
to w/ faulty san. with keywords, such as “sanitization bypass” and
“incorrect filter.” For this set of CPG queries, we manually extracted
unpatched versions of vulnerable PHP applications and the loca-
tions of their user input sources and sink functions.

Consider the vulnerable PHP snippet in Figure 4. This application
is vulnerable due to w/ faulty san.; it has an XSS vulnerability due

to an incorrectly sanitized information flow from an input source
in Ln 4 to a sink function in Ln 12.
Preparing benchmarks. For a set of target PHP applications, we
crawled highly rated web applications with more than 100 stars on
GitHub [3], compiling a set of 7,174 applications for our benchmarks
(§5.1). In the rest of the paper, we use Figure 2 as a running example
for a target PHP application.

4.2 Phase I: Building CPGs
HiddenCPG leverages the Joern open-source tool [6] with the PHP
extension [12] to convert a given application to a CPG. HiddenCPG
takes in the root directory of a target PHP application, builds its
CPG, and saves the graph representation of this CPG into the node
and edge files.
NormalizingCPGs.We further revised this CPG generation tool [12]
to normalize a selection of nodes and edges for CPGs of both target
applications and known vulnerable applications. Note that the code
snippets in Figures 2 and 4 share the same semantics that cause
w/ faulty san. XSS vulnerabilities. However, their code snippets
are syntactically different. This normalization process is necessary
to obtain an intermediate representation that is resilient to small
differences in cloned code while preserving operation semantics.
Figure 4 illustrates an example of this normalization process. We
explain the four normalization steps as follows:

• Step 1: Source and sink abstraction. HiddenCPG normalizes
all nodes of user input sources (e.g., _GET, _POST, and _REQUEST)
and sink functions (e.g., ECHO, PRINT, INCLUDE, and REQUIRE)
with the norm_source and norm_sink nodes, respectively.

• Step 2: Printing context abstraction. We also normalize the
terminal nodes that represent string constants that end with an
open tag in HTML (e.g., "<body><a title=‘example’ href=‘"
in Figure 4) with a node of the pattern norm_[tag name]_[attribute
name] (e.g., norm_a_href). This abstraction is designed to de-
tect w/ faulty san. clones that share the same printing context in
which user input appears in the output HTML.

• Step 3: Terminal node abstraction. We abstract all terminal
nodes of ASTs, such as variable identifiers (e.g., search, now, and
content in Figure 4), string constants (e.g., "<HTML>", "search",

758

HiddenCPG: Large-Scale Vulnerable Clone Detection Using Subgraph Isomorphism of Code Property Graphs WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

CPG query Q

System CPG T

A

B
A

B

C
A

E
B

A
A

A
A

CB
AAC

B BF

A

B
A

B

C
A

B

A
A

A
A

CB
AAC

B

Edges set:

A

B
A

B

C
A

B
A

A
A

CB
AAC

B

VKmin:

db: 3

C

A

B
A

B

C
A

B
A

A
A

CB

A

of nodes per label:

: 2 : 2

: 1

B

C

After Optimization 1

Information of Q

Optimized Ts

After Optimization 2 After Optimization 3

A

B
A

B

C
A

A C

A B

A B

A

Figure 5: Optimization techniques introduced in CBCD [36].

"header.html", "’>", and "</body></html>"), and user-
defined functions (e.g., hasData) as the norm node. HiddenCPG
thus becomes tolerant to differences in these entities.
We exclude the following two cases resulting from this normal-
ization step: (1) built-in function names (e.g., time and htmlspe-
cialchars) and (2) string constants of regular expressions. In
particular, we identify case (2) by extracting the string value of
the first argument of the regular expression processing functions,
including preg_replace and ereg_replace, by traversing an
AST. We leave the node value as is in case (1) to observe a similar
function call usage that causes the API recurring vulnerabili-
ties [48, 67], and in case (2) to observe the propagation of the w/
faulty san. clones caused by custom sanitization functions [13].

• Step 4: Edge abstraction. Our system unifies all labels of the
D edges of the PDG (e.g., Dsearch , Dnow , and Dcontent) and the
CFG edges (i.e., true and f alse), respectively. This step allows
the CPGs to have a more generalized structure, abstracting the
relationships between the nodes.

Extracting a CPG query. Note that a vulnerable PHP snippet
often contains statements that are unrelated to the sink function
that triggers the vulnerability (e.g., Ln 6 in Figure 4). To construct
a concise CPG query that only contains essential nodes and edges
that represent the semantics of the query, we remove graph nodes
that have no data flows to a vulnerable sink function. Specifically,
from a given vulnerable PHP snippet, HiddenCPG computes a CPG
query Q . It starts from the top-level AST node that corresponds to
a vulnerable sink function. From this AST node, HiddenCPG visits
nodes by traversing the D and CG edges backward until reaching
an input source (e.g., (i)→ (e)→ (b) in Figure 4). It also traverses
backward further through C edges when its destination node is a
print or an echo node that decides the printing context of the sink
function (e.g., (i) → (h)). Now, all visited nodes, along with their
underlying AST nodes and edges, constitute Q .

4.3 Phase II: Pruning CPGs
Given a pair (T ,Q), Phase II prunes T for scalable subgraph match-
ing. Recall that identifying isomorphic subgraphs is an NP-complete
problem (§3.1). Therefore, this phase is designed to prune and split

the nodes and edges of the CPGs to be compared, thus reducing
the search space for subgraph isomorphism matching.

For this, we apply three optimization techniques that Cloned
Buggy Code Detector (CBCD) [36] introduced. Note that this prior
study focused on C applications and their program dependence
graphs to find vulnerable subgraphs. We adapt the optimization
techniques that this study [36] introduced for finding web vulnera-
bilities in the CPGs of 7,174 PHP applications on GitHub.

We now focus on describing the optimization techniques that
HiddenCPG applied in the context of our matching environment.
Figure 5 illustrates how the optimization techniques are applied
to find a subgraph matching Q from a given T . We note that these
three optimization techniques are sound, meaning that none of
them removes any true matching nodes or edges.
Optimization 1: Exclude irrelevant edges and nodes from T.
This optimization removes all edges that are not in the edge set of
Q . These edges are irrelevant for finding a subgraph matchingQ . In
particular, it prunes all edges in T , none of which has an identical
edge in Q ; for matching an identical edge, we use its label, head
node, and tail node. This step also removes nodes that do not belong
to the node set of Q but rather to T .
Optimization 2: Break T into small graphs. This optimization
splitsT into multiple subgraphs. Although this process will produce
more candidates for HiddenCPG to match with Q , each candidate
becomes a smaller graph, thus decreasing the execution time for
each matching process. For this, HiddenCPG leverages the number
of node occurrences inT . The main idea is to generate a set of small
subgraphs, each of which is centered around the least frequently
occurring node. The steps of Optimization 2 are as follows:
• Step 1: HiddenCPG counts the number of nodes for each label
in T .

• Step 2: HiddenCPG selects a node in Q that has the minimum
number of occurrences inT . We call this nodeVKmin. When the
number of occurrences of VKmin in T is zero, there is no graph
matching. For instance, in Figure 5, the C node becomes VKmin
because it occurs the fewest number of times in T .

• Step 3: HiddenCPG computes the maximum distance (i.e., radius
db) between VKmin and any other nodes in Q . In this step, the
direction of the edges is ignored when calculating db.

• Step 4: For each VKmin in T , HiddenCPG extracts the isolated
graph with the radius db centered at VKmin.

Optimization 3: Exclude irrelevant graphs. This technique re-
moves irrelevant subgraphs ofT . Note that each isolated graph after
the second optimization must have the following constraints if it
is a subgraph of Q : the number of nodes per label must be greater
than or equal to those ofQ . This optimization excludes any isolated
graphs after the previous step that does not satisfy this constraint.
For example, Optimization 3 in Figure 5 removes one isolated graph
of T because there is only one B node while Q has two B nodes.

4.4 Phase III: Matching Subgraphs
HiddenCPG finally determines whether the CPG query Q is a sub-
graph of the optimized T s that Phase II produces. For this, Hid-
denCPG leverages VF2 for subgraph isomorphism matching [8].
VF2 has been one of the best and most widely used graph matching
algorithms [17].

759

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son

Vulnerability Type
w/o san. w/ faulty san.

Total
wild purpose wild purpose

XSS 1,950 429 20 17 2,416
UFU 0 0 2 0 2
SQLi 5 4 0 0 9
LFI 2 35 0 0 37

Total 1,957 468 22 17 2,464

Table 1: Bugs found by HiddenCPG.

The VF2 algorithm can be described as a means of finding a
mapping M that is expressed as the set of node pairs (n,m) with
n ∈ T andm ∈ Q by exploring the search graph using a depth-first
approach. VF2 begins with an empty mapping and progressively
expands it. In particular, at each level, the algorithm computes the
set of candidate node pairs to be added to the current state s using
nearest neighborhood look ahead rules. If a pair of nodes (n,m)

is feasible with respect to the consistency and pruning functions,
the mapping is extended and the associated successor state s ′ is
recursively computed. The whole procedure is then repeated until
a complete mapping is achieved.

We note that the result of a mapping M helps us pinpoint the
exactly matched code by observing nodes equivalent to those in Q .
For example, in Figure 4, after running VF2 for a given pair (T ,Q),
we are able to obtain the following mapping result expressed as
(node of T): (corresponding node of Q).
Mapping result: (l):(b), (n):(e), (o):(h), (p):(i), etc.

Note that we have not shown the node mapping of the AST
subtrees in this example. This information helps developers locate
discovered vulnerabilities in T .

5 EVALUATION
We evaluated the capability of HiddenCPG to find diverse types
of web vulnerabilities, including those w/o san. and w/ faulty san.
(§5.2,) and analyzed the performance of HiddenCPG in finding 2,464
vulnerabilities (§5.3). In Appendix, we present the benchmark statis-
tics regarding system CPGs and CPG queries (§9.1) and correlation
analyses between various factors, including query size, project pop-
ularity, and found vulnerabilities (§9.2). We also present case studies
(§9.3) and comparative evaluation results with two static analysis
tools in a controlled environment (§9.4).

5.1 Experimental Setup
We conducted experiments on a machine running 64-bit Ubuntu
18.04 LTS, which was equipped with an Intel Core i7-8700 (3.20
GHz) CPU and 32 GB of main memory.
System CPGs.We ran a series of experiments on 7,174 PHP web
applications. We selected our benchmark applications from highly
rated PHP projects withmore than 100 stars on GitHub [3] to ensure
that all selected projects had a certain level of popularity among
developers. We used the GitHub API [4] to crawl these projects
while ensuring that there were no identical projects among the
benchmarks. We then applied the Joern framework with PHP ex-
tension [12] to build and store the system CPG for each benchmark
project. For scalable detection, we set the execution time to be five
minutes for each graph pair: system CPG (T) and CPG query (Q).

Among the 7,174 crawled projects, we identified 270 that are less
motivated to prevent web vulnerabilities. Unlike other applications

designed to offer web services to the public, these projects were
designed for educational purposes, webshells, and web scanner test
cases. To identify these projects, we check whether the project name
contains any of the following keywords: “webshell”, “malware”,
“challenges”, “devilbox”, “CTF”, etc. We expected vulnerabilities
to be more common in these applications since the developers
of these projects are less motivated to prevent their code from
having vulnerabilities. In our experiments, we distinguish this set
of applications from the rest; we name this set and the remaining
one as purpose and wild, respectively.
CPG queries. Recall that we collected a set of vulnerable PHP
snippets from the list of CVEs [1] and GitHub repositories [2] (§4.1).
Our query benchmarks include 103 CPG queries from 40 PHP web
applications. Of the 103 queries, 10 queries were from nine applica-
tions that implemented incorrect sanitization. The vulnerabilities in
five of these CPGs stem from ignoring the context of output forms
in which user input appears. The vulnerabilities in the remaining
five CPGs are due to using custom sanitization logic that omits the
usage of built-in sanitization functions.

5.2 Bugs Found
Table 1 shows the experimental results of applying HiddenCPG to
the wild and purpose benchmarks. HiddenCPG found 2,464 distinct
potential vulnerabilities, including 39 w/ faulty san. vulnerabili-
ties in 270 applications. Overall, HiddenCPG found 2,416 XSS, two
UFU, 55 SQLi, and two LFI vulnerabilities. We believe that all the
discovered vulnerabilities have serious security impacts on their
corresponding applications. The attackers exploiting the vulnera-
bilities are able to initiate denial-of-service (DoS) attacks, change
sensitive database records, upload PHP webshell files that enable re-
mote code execution, and access sensitive local files on web servers.
Special purpose. From the 2,464 potential vulnerabilities detected,
we observed that 485 reports from 23 applications belong to the pur-
pose set. Here, we observed that the ratio of vulnerable applications
to the total number of applications is much higher in the purpose set
(i.e., 23/270 ≃ 0.09) than that in the wild set (i.e., 247/6, 923 ≃ 0.04),
which aligns with our initial assumption (§5.1).
Report verification.We further investigated the identified secu-
rity vulnerabilities to confirm their exploitability. In this process,
we only considered the vulnerabilities from the wild set because
many of the purpose projects intentionally contain bugs or are not
designed to perform functional services.

We analyzed all the HiddenCPG’s reports for XSS-w/ faulty san.,
SQLi, LFI, and UFU vulnerabilities. Considering that the number of
potential 1,970 XSS-w/o san. vulnerabilities was too large to consider
auditing each one, we sampled 74 reports from the applications that
obtained the largest number of stars from the GitHub community.
In summary, we analyzed 103 sampled reports (74 XSS-w/o san., 20
XSS-w/ faulty san., 2 UFU, 5 SQLi, and 2 LFI vulnerability reports)
to check whether they were indeed exploitable.

We confirmed 89 true positives from 64 applications. The re-
maining 14 reports (12 XSS-w/o san. and 2 LFI) from 13 applications
(13.59%) were false positives. Of the identified false positives, 12
reports have vulnerable matching subgraphs but implement sepa-
rate sanitization logic in dynamic callbacks that are invoked at the
beginning of the respective PHP file execution. Note that the CG

760

HiddenCPG: Large-Scale Vulnerable Clone Detection Using Subgraph Isomorphism of Code Property Graphs WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Vulnerability Type Type-1 Type-2 Type-3

XSS 1,014 1,376 26
UFU 2 0 0
SQLi 0 0 9
LFI 3 34 0

Total 1,019 1,410 35

Table 2: Number of vulnerabilities by clone type.

edges of these dynamic callbacks do not exist in the system CPGs
due to the static nature of computing call graphs. We note that this
limitation stems from one of the fundamental limitations of static
analyses, which the previous study [12] also described. The remain-
ing two reports stem from CPG queries of an XSS vulnerability in
which POST requests are used. The developers implemented anti-
CSRF protection properly; thus, the attacker is unable to exploit
the vulnerabilities without valid anti-CSRF tokens.
Bug disclosure. Among 89 true positives, 21 vulnerabilities from
12 applications had already been patched or reported to the appli-
cation’s repository at the time HiddenCPG discovered them. We
reported the remaining 68 vulnerabilities to their corresponding
vendors and received 42 CVEs from 17 vendors between April and
September 2021. 15 vulnerabilities from eight vendors, including Li-
breNMS and ICEcoder, have been patched. Two vendors mentioned
they would address eight vulnerabilities. For eight vulnerabilities,
the corresponding vendors acknowledged the reported bugs. For
the remaining 37 bugs, we have not received responses.
Root causes. We analyzed the root causes of the discovered vul-
nerabilities due to w/ faulty san. from the wild set. Of the 22 vul-
nerabilities, 11 were from the disregarding of the output context in
which user input appears. The other 11 vulnerabilities were caused
by not using correct built-in sanitization functions.
Clone types. In general, code clones are of the following four
different types [15, 49, 50, 52, 66]:
• Type-1: Exact clones that are syntactically identical except for
differences in white space, layout, and comments.

• Type-2: Renamed clones that are syntactically identical except
for differences in types, identifiers, literals, space, layout, and
comments.

• Type-3: Near-similar clones that are copied with additional mod-
ifications such as deletion, insertion, or rearrangement of state-
ments, in addition to Type-2 clones.

• Type-4: Semantic clones that are semantically the same but are
implemented using different syntactic variants.
Note that HiddenCPG covers Type-1, Type-2, and Type-3 clones.

Specifically, our tool is able to find Type-2 clones through the node
and edge abstraction techniques and to identify Type-3 clones by
matching extracted CPG queries, in which only the vulnerable pat-
terns are refined from the huge volume of continuous code. Table 2
presents the number of vulnerabilities by clone type. We obtained
clone type information by observing the node and edge mapping
relationship between T and Q , and their corresponding code snip-
pets. We observed that HiddenCPG found many vulnerable Type-2
clones, which demonstrates that the vulnerability is propagated
widely through simple modification practices, such as changing
variable names, function names, and value changes.

HiddenCPG also found 35 Type-3 clones, which are known to
be technically challenging and time-consuming to identify [56,
59]. Previous research has proposed clone detection techniques

of text-based [33, 51] and token-based clones [28, 40]. However,
the majority of them have not addressed Type-3 clones since they
focused on the accurate matching of local elements. On the other
hand, tree-based and graph-based matching approaches are able
to detect Type-3 clones with the exchange for much computing
time and resources [14, 25, 51]. HiddenCPG discovered these 35
vulnerabilities with the help of extracted CPG queries by leveraging
optimization techniques that reduce matching times.

By design, HiddenCPG is unable to find Type-4 clones because it
matches AST nodes to find CPG clones. Excluding these AST nodes
in matching could help identify Type-4 clones, but with many false
positives. We believe that the identification of Type-4 clones in
CPGs requires further research to find an appropriate abstraction
level for AST nodes.

5.3 Performance
We measured the execution time of HiddenCPG to find subgraphs
matching Q . The execution time we measured includes the time to
apply the optimization and the time to pass on VF2, but not the time
to load the graph into the program. When drawing the cumulative
distribution function (CDF) of the execution time of HiddenCPG
for each testing of one system CPG and one CPG query, for 97%
of matching one T and one Q , HiddenCPG required less than 10
seconds to find vulnerabilities matching Q . For 50% of the matches,
it required less than 0.01 seconds.

To complete its task of finding vulnerabilities in 7,174 projects
with 103 queries (i.e., 7, 174 × 103 ≃ 739K matching), HiddenCPG
required approximately 16 days and 12 hours. For each target ap-
plication, HiddenCPG required an average of 3 minutes and 19
seconds. Considering that a previous work [12] took 6 days and 13
hours to find vulnerabilities in 1,854 projects using a machine with
32 physical 2.60 GHz Intel Xeon CPUs and 768 GB of RAM, access-
ing far more computational resources than in the present study, the
execution time of HiddenCPG is reasonable and demonstrates its
efficiency in scalable subgraph matching.
Comparison against baselines.We comparedHiddenCPG against
VF2 without optimization and VF2 with a subset of the employed
optimization techniques to measure their efficacy. In particular, we
ran HiddenCPG with different setups on the same pairs of (T ,Q)
andmeasured the execution times and number of bugs found within
a predefined time budget (i.e., a five-minute timeout). In this experi-
ment, we sampled 20 of the vulnerable applications that HiddenCPG
found, from the highest to the lowest number of stars, and used
them as a set of system CPGs. Since Optimization 3 is meaningless
when applied alone (one large T already has more nodes per label
than Q), we combined Optimizations 2 and 3.

As shown in Table 3, HiddenCPG far surpassed other techniques
in terms of the execution times and number of bugs found. VF2
required more than six days, and each optimization technique re-
quired two days to finish detecting vulnerable subgraphs; by con-
trast, HiddenCPG finished matching within one day.

The results also show that each optimization technique con-
tributes to improving the performance of subgraph isomorphism
matching. Although Optimization 2+3 did not find more bugs than
Optimization 2, this technique reduced the average execution time
per matched pair by 29 seconds by excluding irrelevant subgraphs.

761

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son

Tools
Total Average† # of Buggy # of

ExecutionTime ExecutionTime Applications Bugs Found

VF2 6d 8h 12m 4m 25s 4 4
Optimization 1 2d 10h 39m 1m 42s 14 17
Optimization 2 2d 17h 15m 1m 54s 8 47

Optimization 2+3 2d 00h 55m 1m 25s 8 47
HiddenCPG 1d 1h 55m 45s 20 159
† The average time required to match one G and one H .

Table 3: Time and the number of bugs found in 20 selected
benchmarks using five different approaches.

We conclude that combining all three optimization techniques is
the best practice to improve performance.

6 LIMITATIONS AND DISCUSSION
HiddenCPG requires manual effort for specifying sources and sinks
in vulnerable applications to extract CPG queries. In theHiddenCPG
design, this is the only step that requires human involvement. We
note that vulnerability reports usually specify which files and which
variables are vulnerable, so this information helps pinpoint the
location of sources and sinks. It took one researcher about three
minutes to label the location of them for a vulnerability. We leave
the automatic extraction of these spots to future work.

Code property graphs contain rich information about the under-
lying code. Therefore, HiddenCPG can be used to discover other
types of web vulnerabilities, including EAR [11] and CSRF [30]. We
acknowledge that we evaluated HiddenCPG with a limited number
of 103 CPG queries, which may produce false negatives. However,
as the size of the dictionary of CPG queries increases, HiddenCPG
covers increasingly varied kinds of vulnerabilities.

We emphasize the capability of HiddenCPG to pinpoint matching
subgraphs in a target CPG, which greatly reduces the burden of
debugging. When target statements matching a given query are
spread across in a function, HiddenCPG is helpful in identifying all
the vulnerable statements that constitute a vulnerable subgraph.

We argue that the normalized and extracted CPG query we de-
vised (§4.2) has a finer granularity than line- or function-level
granularity. This fine-grained granularity, which contains only
the components that contribute to triggering a vulnerability, en-
ables HiddenCPG to find vulnerable code patterns scattered across
a target application that cannot be found using previous line- or
function-level clone detectors [24, 33]. We also tailored node and
edge abstractions for isomorphic subgraph matching in PHP CPGs
for accurate matching. Among 2,464 potential vulnerabilities, Hid-
denCPG would miss 2,106 ones when using line- or function-level
matching detection alone. Previous research [20, 34, 42, 61] has
suggested representations similar to CPG query, which consists of
a small number of (not necessarily consecutive code) lines that are
semantically related. However, they did not consider the context
of how user input appears through a vulnerable sink function by
abstracting this echo context. They would be unable to find 39 w/
faulty san. vulnerabilities that HiddenCPG discovered.

7 RELATEDWORK
Finding web vulnerabilities. Previous research has proposed
static analyses in identifying data-flow vulnerabilities, including
XSS and SQLi [21, 26, 27, 35, 37, 39, 43, 58, 60, 62]. Pixy [27] per-
forms an inter-procedural and context-sensitive data flow analysis

on PHP web applications. Backes et al. [12] applied code property
graphs [64] for vulnerability discovery in PHP web applications.
The authors leveraged graph traversal by searching for code pat-
terns that match a given query on the computed graphs.

There are several works on applying symbolic execution to PHP
web applications [10, 11, 23, 38, 54, 55, 62]. NAVEX [11] introduced
an automatic exploit generation framework. It combines static and
dynamic analyses to identify the paths from sources to vulnerable
sinks while considering sanitization filters and generates exploit
strings by solving symbolic constraints. Saner identifies vulnera-
bilities that stem from incorrect or incomplete sanitization [13]. It
leverages an automata instance to model how an application crafts
its string values along the paths to a sensitive sink.
Clone detection. There is a large body of research on finding vul-
nerable code clones based on the source-level [20, 24, 29, 33, 34,
40, 42, 44] and binary-level [16, 19, 22, 63] matching techniques.
CP-Miner [40] focuses on token-by-token matching by using the
frequent subsequence mining algorithm [65]. VUDDY [33] lever-
ages four levels of vulnerability-preserving abstraction that are
resilient to common code modifications. It also uses function-level
granularity and length-filtering techniques to lower the number
of clone comparisons. Li et al. [41] proposed a set of features to
characterize patches and leveraged a trained model to choose the
best code representation and one of the similarity computation al-
gorithms. VulDeePecker [42] feeds code gadgets that are composed
of a number of semantically related statements into Bidirectional
LSTM to learn vulnerability patterns.

Xiao et al. [61] proposed MVP, which uses a slicing method to
extract both vulnerability and patch signatures from vulnerable
functions. It judges a function to be vulnerable when it contains the
vulnerability signature but does not match with the patch signa-
ture. Li and Ernst [36] developed the semantics-based buggy code
clone detection approach CBCD. It generates the PDGs for buggy
codes and conducts subgraph isomorphism matching with its four
optimizations that reduce the complexity of graphs.

Unlike the existing code clone detection techniques, we con-
ducted subgraph isomorphism matching in CPG representations
to find various web vulnerabilities, including bugs that stem from
incorrect sanitization.

8 CONCLUSION
In this paper, we propose HiddenCPG, a vulnerable clone detection
system for uncovering various web vulnerabilities stemming from
incorrect sanitization. HiddenCPG checks whether a given CPG
query matches a subgraph of the target CPG. We leverage the three
optimization techniques proposed in CBCD to make subgraph test-
ing cheaper. HiddenCPG found 2,464 potential web vulnerabilities,
including 89 confirmed bugs in the 7,174 PHP applications, demon-
strating the practical utility of HiddenCPG for finding vulnerable
code clones in a large-scale manner.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for
their concrete feedback. This work was supported by Institute of
Information & communications Technology Planning & Evaluation

762

HiddenCPG: Large-Scale Vulnerable Clone Detection Using Subgraph Isomorphism of Code Property Graphs WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

(IITP) grant funded by the Korea government (MSIT) (No.2020-0-
00153, Penetration Security Testing of ML Model Vulnerabilities
and Defense).

REFERENCES
[1] [n. d.]. Common Vulnerability Enumeration (CVE). https://cve.mitre.org.
[2] [n. d.]. GitHub. https://github.com.
[3] [n. d.]. Github PHP project. https://github.com/topics/php?o=desc&s=stars.
[4] [n. d.]. GitHub REST API. https://docs.github.com/en/rest.
[5] [n. d.]. GitHut: a small place to discover languages in GitHub. https://githut.info/.
[6] [n. d.]. Joern. https://github.com/ShiftLeftSecurity/joern.
[7] [n. d.]. Usage of server-side programming languages for websites. https://w3techs.

com/technologies/overview/programming_language/all.
[8] [n. d.]. VF2 Implement a (Sub)Graph Isomorphism Algorithm for Matching Large

Graphs. https://github.com/yaolili/VF2.
[9] [n. d.]. Wikitten. https://github.com/devaneando/Wikitten.
[10] Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. 2016.

Chainsaw: Chained automated workflow-based exploit generation. In Proceedings
of the ACM Conference on Computer and Communications Security. 641–652.

[11] Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. 2018.
NAVEX: precise and scalable exploit generation for dynamic web applications.
In Proceedings of the USENIX Security Symposium. 377–392.

[12] Michael Backes, Konrad Rieck, Malte Skoruppa, Ben Stock, and Fabian Yamaguchi.
2017. Efficient and Flexible Discovery of PHP Application Vulnerabilities. In
Proceedings of the IEEE European Symposium on Security and Privacy. 334–349.

[13] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. 2008. Saner: Composing static and
dynamic analysis to validate sanitization in web applications. In Proceedings of
the IEEE Symposium on Security and Privacy. 387–401.

[14] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and Lorraine
Bier. 1998. Clone detection using abstract syntax trees. In Proceedings of the
International Conference on Software Maintenance. 368–377.

[15] Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore Merlo.
2007. Comparison and evaluation of clone detection tools. IEEE Transactions on
Software Engineering 33, 9 (2007), 577–591.

[16] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu, Chia Yuan
Cho, and Hee Beng Kuan Tan. 2016. BinGO: Cross-architecture cross-os binary
search. In Proceedings of the International Symposium on Foundations of Software
Engineering. 678–689.

[17] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A
(sub) graph isomorphism algorithm for matching large graphs. Proceedings of
the IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 10 (2004),
1367–1372.

[18] Johannes Dahse and Jörg Schwenk. 2010. RIPS-A static source code analyser for
vulnerabilities in PHP scripts. In Seminar Work (Seminer Çalismasi). Horst Görtz
Institute Ruhr-University Bochum.

[19] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. 2016. discovRE:
Efficient Cross-Architecture Identification of Bugs in Binary Code. In Proceedings
of the Network and Distributed System Security Symposium. 58–79.

[20] Aurore Fass, Michael Backes, and Ben Stock. 2001. HideNoSeek: Camouflaging
malicious javascript in benign asts. In Proceedings of the ACM Conference on
Computer and Communications Security. 1899–1913.

[21] Aurore Fass, Dolière Francis Somé,Michael Backes, and Ben Stock. 2021. DoubleX:
Statically Detecting Vulnerable Data Flows in Browser Extensions at Scale. In
Proceedings of the ACM Conference on Computer and Communications Security.

[22] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. 2016. Scalable graph-based bug search for firmware images. In Proceedings
of the ACM Conference on Computer and Communications Security. 480–491.

[23] Jin Huang, Yu Li, Junjie Zhang, and Rui Dai. 2019. UChecker: Automatically
Detecting PHP-Based Unrestricted File Upload Vulnerabilities. In Proceedings of
the International Conference on Dependable Systems Networks. 581–592.

[24] Jiyong Jang, Abeer Agrawal, and David Brumley. 2012. ReDeBug: finding un-
patched code clones in entire os distributions. In Proceedings of the IEEE Sympo-
sium on Security and Privacy. 48–62.

[25] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
DECKARD: Scalable and accurate tree-based detection of code clones. In Pro-
ceedings of the International Conference on Software Engineering. 96–105.

[26] Martin Johns and Moritz Jodeit. 2011. Scanstud: a methodology for systematic,
fine-grained evaluation of static analysis tools. In Proceedings of the International
Conference on Software Testing, Verification and Validation Workshops. 523–530.

[27] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006. Pixy: a static
analysis tool for detecting Web application vulnerabilities. In Proceedings of the
IEEE Symposium on Security and Privacy. 258–263.

[28] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[29] Alexandros Kapravelos, Yan Shoshitaishvili, Marco Cova, Christopher Kruegel,
and Giovanni Vigna. 2013. Revolver: An automated approach to the detection of
evasive web-based malware. In Proceedings of the USENIX Security Symposium.
637–652.

[30] Soheil Khodayari and Giancarlo Pellegrino. 2021. JAW: Studying Client-side
CSRF with Hybrid Property Graphs and Declarative Traversals. In Proceedings of
the USENIX Security Symposium.

[31] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empirical
study of code clone genealogies. In Proceedings of the ACM Special Interest Group
on Software Engineering. 187–196.

[32] Seulbae Kim and Heejo Lee. 2018. Software systems at risk: An empirical study
of cloned vulnerabilities in practice. Computers & Security 77 (2018), 720–736.

[33] Seulbae Kim, Seunghoon Woo, Heejo Lee, and Hakjoo Oh. 2017. VUDDY: A
scalable approach for vulnerable code clone discovery. In Proceedings of the IEEE
Symposium on Security and Privacy. 595–614.

[34] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify duplica-
tion in source code. In Proceedings of the International Static Analysis Symposium.
40–56.

[35] Sebastian Lekies, Ben Stock, and Martin Johns. 2013. 25 million flows later:
large-scale detection of DOM-based XSS. In Proceedings of the ACM Conference
on Computer and Communications Security. 1193–1204.

[36] Jingyue Li and Michael D Ernst. 2012. CBCD: Cloned buggy code detector. In
Proceedings of the International Conference on Software Engineering. 310–320.

[37] Penghui Li and Wei Meng. 2021. LChecker: Detecting Loose Comparison Bugs
in PHP. In Proceedings of the Web Conference. 2721–2732.

[38] Penghui Li, Wei Meng, Kangjie Lu, and Changhua Luo. 2021. On the Feasibil-
ity of Automated Built-in Function Modeling for PHP Symbolic Execution. In
Proceedings of the Web Conference. 58–69.

[39] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2022. Mining Node.js
Vulnerabilities via Object Dependence Graph and Query. In Proceedings of the
USENIX Security Symposium.

[40] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding copy-paste and related bugs in large-scale software code. IEEE Transac-
tions on Software Engineering 32, 3 (2006), 176–192.

[41] Zhen Li, Deqing Zou, Shouhuai Xu, Hai Jin, Hanchao Qi, and Jie Hu. 2016.
VulPecker: an automated vulnerability detection system based on code similarity
analysis. In Proceedings of the ACM Conference on Computer and Communications
Security. 201–213.

[42] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. 2018. VulDeePecker: A deep learning-based system for
vulnerability detection. In Proceedings of the Network and Distributed System
Security Symposium.

[43] Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya Banerjee.
2009. Merlin: Specification inference for explicit information flow problems.
In Proceedings of the ACM Conference on Programming Language Design and
Implementation. 75–86.

[44] Heloise Maurel, Santiago Vidal, and Tamara Rezk. 2021. Statically Identifying XSS
using Deep Learning. In Proceedings of the International Conference on Security
and Cryptography.

[45] Jean Mayrand, Claude Leblanc, and Ettore Merlo. 1996. Experiment on the
Automatic Detection of Function Clones in a Software System Using Metrics. In
Proceedings of the International Conference on Software Maintenance. 244.

[46] ManishankarMondal, Chanchal K Roy, and Kevin A Schneider. 2017. Bug propaga-
tion through code cloning: An empirical study. In Proceedings of the International
Conference on Software Maintenance. 227–237.

[47] Paulo Nunes, Ibéria Medeiros, José C Fonseca, Nuno Neves, Miguel Correia, and
Marco Vieira. 2018. Benchmarking static analysis tools for web security. IEEE
Transactions on Reliability 67, 3 (2018), 1159–1175.

[48] NamH Pham, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N Nguyen. 2010.
Detection of recurring software vulnerabilities. In Proceedings of the International
Conference on Automated Software Engineering. 447–456.

[49] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. 2013. Software clone
detection: A systematic review. Information and Software Technology 55, 7 (2013),
1165–1199.

[50] Chanchal Kumar Roy and James R Cordy. 2007. A survey on software clone
detection research. Queen’s School of Computing TR 541, 115 (2007), 64–68.

[51] Chanchal K Roy and James R Cordy. 2008. NICAD: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code normalization. In
Proceedings of the International Conference on Program Comprehension. 172–181.

[52] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470–495.

[53] Haichuan Shang, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2008. Taming
verification hardness: an efficient algorithm for testing subgraph isomorphism.
Proceedings of the International Conference on Very Large Data Bases 1, 1 (2008),
364–375.

[54] Sooel Son and Vitaly Shmatikov. 2011. SAFERPHP: Finding semantic vulnera-
bilities in PHP applications. In Proceedings of the ACM SIGPLAN Workshop on

763

https://cve.mitre.org
https://github.com
https://github.com/topics/php?o=desc&s=stars
https://docs.github.com/en/rest
https://githut.info/
https://github.com/ShiftLeftSecurity/joern
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://github.com/yaolili/VF2
https://github.com/devaneando/Wikitten

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son

Programming Languages and Analysis for Security.
[55] Fangqi Sun, Liang Xu, and Zhendong Su. 2014. Detecting Logic Vulnerabilities in

E-commerce Applications. In Proceedings of the Network and Distributed System
Security Symposium.

[56] Yasushi Ueda, Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002.
On detection of gapped code clones using gap locations. In Proceedings of the
Asia-Pacific Software Engineering Conference. 327–336.

[57] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the
ACM 23, 1 (1976), 31–42.

[58] Steven Van Acker, Nick Nikiforakis, Lieven Desmet, Wouter Joosen, and Frank
Piessens. 2012. FlashOver: Automated discovery of cross-site scripting vulner-
abilities in rich internet applications. In Proceedings of the ACM Symposium on
Information, Computer and Communications Security. 12–13.

[59] Pengcheng Wang, Jeffrey Svajlenko, Yanzhao Wu, Yun Xu, and Chanchal K Roy.
2018. CCAligner: a token based large-gap clone detector. In Proceedings of the
International Conference on Software Engineering. 1066–1077.

[60] Gary Wassermann and Zhendong Su. 2007. Sound and precise analysis of web
applications for injection vulnerabilities. In Proceedings of the ACM Conference
on Programming Language Design and Implementation. 32–41.

[61] Yang Xiao, Bihuan Chen, Chendong Yu, Zhengzi Xu, Zimu Yuan, Feng Li,
Binghong Liu, Yang Liu, Wei Huo, Wei Zou, et al. 2020. MVP: Detecting Vulner-
abilities using Patch-Enhanced Vulnerability Signatures. In Proceedings of the

USENIX Security Symposium. 1165–1182.
[62] Yichen Xie and Alex Aiken. 2006. Static Detection of Security Vulnerabilities in

Scripting Languages. In Proceedings of the USENIX Security Symposium. 179–192.
[63] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.

Neural network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the ACMConference on Computer and Communications
Security. 363–376.

[64] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling
and discovering vulnerabilities with code property graphs. In Proceedings of the
IEEE Symposium on Security and Privacy. 590–604.

[65] Xifeng Yan, Jiawei Han, and Ramin Afshar. 2003. CloSpan: Mining: Closed
sequential patterns in large datasets. In Proceedings of the SIAM international
conference on data mining. 166–177.

[66] Haibo Zhang and Kouichi Sakurai. 2021. A Survey of Software Clone Detection
From Security Perspective. IEEE Access 9 (2021), 48157–48173.

[67] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware android
malware classification using weighted contextual API dependency graphs. In
Proceedings of the ACM Conference on Computer and Communications Security.
1105–1116.

764

HiddenCPG: Large-Scale Vulnerable Clone Detection Using Subgraph Isomorphism of Code Property Graphs WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

0

50

100

150

200

250

9 13 15 17 19 20 21 23 51 53 82

#
of

 V
ul

ne
ra

bi
liti

es

Size of the CPG Queries

2,000

2,050

Figure 6: Relationship between the size of CPG queries and
vulnerabilities.

0

20

40

60

80

100

10
0
40
0
70
0
1,0
00
1,3
00
1,6
00
1,9
00
2,2
00
2,5
00
2,8
00
3,1
00

4,4
00

5,9
00

7,9
00

26
,52
9

#
of

 V
ul

ne
ra

bl
e

Ap
ps

of Stars
Figure 7: Relationship between project popularity and vul-
nerabilities.

0

500

1,000

1,500

2,000

2,500

0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Size of the System CPGs
Figure 8: Relationship between sizes of system CPGs and ex-
ecution times.
9 APPENDIX
9.1 Statistics of Benchmarks
System CPGs. Table 4 shows the statistics of our benchmarks. It
represents the execution time of HiddenCPG for generating system
CPGs for 7,174 applications. HiddenCPG took an average of 3.2 sec
to generate a CPG for one PHP application and required approxi-
mately six hours for all applications. The sizes of target applications
vary from seven to three million LoC, constituting 234 million LoC
for our benchmarks. To the best of our knowledge, our benchmarks
represent the largest collection of PHP applications that have been
collected to date for the purpose of finding vulnerabilities.

The resulting CPGs consist of over one billion nodes and nine
million CFG edges, 81 million PDG edges, and 119 million call edges.
There exist many more AST edges than CFG or PDG edges since
CFG and PDG edges only connect the top-level AST nodes.
CPG queries.We also analyzed the statistics for CPG queries. Ta-
ble 5 shows the types of vulnerabilities with the respective number
of queries. In particular, the second and third columns present the
number of CPG queries without sanitization and with incorrect san-
itization, respectively. The fourth to ninth columns represent the
average, minimum, and maximum values of the nodes and edges,
respectively.

Graph Generation Time

Average for AST generation 0.6s
Total for AST generation 1h 6m 25s
Average for CFG, PDG, and CG edge generation 2.6s
Total for CFG, PDG, and CG edge generation 4h 54m 45s

Benchmark and Graph Sizes

of projects 7,174
of PHP files 1,501,189
of PHP LOC 234,096,767
of AST nodes 1,068,769,157
of AST edges 1,066,995,988
of CFG edges 9,118,752
of PDG edges 81,509,701
of CG edges 119,405,582

Table 4: Statistics for benchmark datasets.

Vulnerability # of Queries # of Nodes # of Edges
Type w/o san. w/ faulty san. Min Avg Max Min Avg Max

XSS 57 9 5 19.4 63 4 18.6 63
UFU 0 1 9 9 9 8 8 8
SQLi 31 0 17 30.6 46 16 30.5 47
LFI 5 0 5 12.4 27 4 11.6 27

Table 5: Statistics for CPG queries.

9.2 Correlation Analyses
Query sizes and vulnerabilities. We measured the number of
vulnerabilities that HiddenCPG found according to the size of the
CPG queries. Figure 6 shows the results of the measurement. Here,
the size of the query indicates the number of all nodes and edges.

We observed that HiddenCPG found many XSS bugs by applying
queries of size nine consisting of simple vulnerable code snippets
like <?echo $_GET["input"]?>. We believe that this result is a
wake-up call for many PHP developers who do not pay attention
to even simple security practices. We also observed that 10 reports
that triggered XSS and SQLi vulnerabilities resulted from applying
queries of sizes greater than 50. Note that the buggy code clones
that match these large queries were scattered across within their
respective functions; manually identifying all vulnerable statements
that constitute a matching query was non-trivial.
Project popularity and vulnerabilities. Figure 7 illustrates the
correlation between the number of vulnerable projects and the
level of attention that the project has received. The results show
that vulnerable subgraphs occurred more frequently in projects
with fewer stars. We believe that this finding hints that the more
influential projects are, the more they adhere to their own coding
style and perform stricter security checks.
Application sizes and performance.We analyzed howmuch the
execution time varies depending on the size of the target application.
Figure 8 shows the relationships between the matching time and
the graph size (i.e., the number of all nodes and edges) for each
target application. We observed a proportional but not complete
relationship. Note that when the graph size is below one million,
the matching process tends to be completed within 500 seconds;
however, when the size exceeds one million, the execution time
is not strongly correlated with the size of the system CPG. This
means that as the size of the graph increases, the graph matching
complexity varies according to coding style rather than size.

765

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Seongil Wi, Sijae Woo, Joyce Jiyoung Whang, and Sooel Son

1 <?php $url = $_POST['url']?>
2 ...
3 <?php $i++; ?>
4 <?php echo ($i == count($parts) ? 'active' : '')
5 ?>">
6 <a href="
7 <?php
8 echo htmlspecialchars($url, ENT_QUOTES, 'UTF-8')
9 ?>">
10 <?php if ($i == count($parts) && !$is_dir): ?>
11 <i class="far fa-file"></i>
12 ...

(a) Target (T): Vulnerable code fromWikitten CMS.

1 <?php
2 $message = $_GET['message']; ?>
3 <?php echo '<?xml version="1.0" encoding="UTF-8"?>' ?>
4 ...
5 <h1>XSS Demo</h1>
6 <p>POC: javascript:alert(2)</p>
7 <p><a href="
8 <?php echo htmlspecialchars($message, ENT_QUOTES, 'UTF-8');?>">
9 value</p>

(b) Query (Q): Vulnerable code from Vulnerable-Site-Sample.

Figure 10: Case study #2. Wikitten.

Tools TP(s) FN(s) FP(s) Accuracy Time (s)

HiddenCPG 39 5 1 0.87 6.11
PHPJoern [12] 32 12 25 0.46 6.27

RIPS [18] 22 22 24 0.32 4.13

Table 6: Detection results on the benchmarks using thre dif-
ferent static analysis tools.
9.3 Case Studies for the Bugs Found
We investigate the findings of HiddenCPG during the experiments
(§5.2) and how our approach contributed to uncovering bugs.
Shudong-share Figure 9a shows the vulnerable code examined
with the clone spots highlighted. The attacker can inject arbitrary
SQL commands for backend database manipulation. With the help
of a CPG query extracted from the CMSsite code snippet in Fig-
ure 9b, HiddenCPG was able to match the vulnerable statements
scattered in the continuous code.
1 case 'delgroup':
2 $groupId = $_POST['gid'];
3 if($groupId == "1"||$groupId == "2") {
4 echo "bad"; exit(); }
5 echo "success";
6 $check = "SELECT * FROM sd_users where 'group' = '$groupId'";
7 $cha_result3 = mysqli_query($con,$check);

(a) Target (T): Vulnerable code from Shudong-share.

1 if (isset($_POST['submit'])) {
2 $search = $_POST["search"];
3 $query = "SELECT * FROM posts WHERE post_tags LIKE'
4 %$search%' AND post_status='publish'";
5 $search_query = mysqli_query($con, $query);
6 if (!$search_query) {
7 die("Query Fail" . mysqli_error($con));}
8 $count = mysqli_num_rows($search_query);

(b) Query (Q): Vulnerable code from CMSsite.

Figure 9: Case study #1. Shudong-share.

Wikitten. Wikitten [9] has an XSS w/ faulty san. vulnerability
that stems from the insecure usage of the printing context where

user input appears. Figure 10a shows a vulnerable snippet from
Wikitten CMS. This vulnerability can be triggered by injecting
javascript:alert("xss"), not requiring any script tags. Figure 10b
presents the vulnerable code snippet from Vulnerable-Site-Sample
designed for educational purposes. In particular, we used the code
in Ln 2 as the source, and Ln 8 as the sensitive sink to extract the
CPG query. This case demonstrates that HiddenCPG is capable of
detecting vulnerabilities stemming from faulty input sanitization by
abstracting the echoed environment through node normalization.

9.4 Comparison against Static Analysis Tools
We compared HiddenCPG against two static analysis tools: RIPS
0.55 [18] and PHPJoern [12]. RIPS is an open-source taint analysis
tool, and PHPJoern is a graph traversal-based vulnerable pattern
detection tool. Since Backes et al. [12] did not release their graph
queries, we implemented two XSS/SQLi queries by referencing their
paper. We also added several target sinks (e.g., wpdb->query()) to
their original sink list to improve the recall.

We used the benchmark of PHP applications from the evaluation
set that Nunes et al. [47] have used to evaluate PHP static analysis
tools. Among the benchmark applications, we selected 16 PHP
applications of which source code are publicly available. These
applications have 24 vulnerabilities, including known 8 XSS and
16 SQLi vulnerabilities. We also prepared 15 applications with 20
XSS-w/ faulty san. vulnerabilities that HiddenCPG found in the wild
set (§5.2). For CPG queries, we used the same CPG queries used in
the evaluations in Section 5.2.

Table 6 summarizes the experimental results. HiddenCPG re-
ported 39 TPs with five FNs and one FP (0.87 accuracy). One FP
implements separate sanitization logic that is invoked at the be-
ginning of the respective PHP file execution. Five FNs are due to
no matching queries. However, when adding three additional CPG
queries, HiddenCPG is able to find these missing five vulnerabilities.

PHPJoern reported 32 TPs with 12 FNs and 25 FPs (0.46 accu-
racy). Of the identified FPs, one report is the same as the one FP
of HiddenCPG. The remaining 24 FPs were due to tainted but safe
data flows that the attacker is unable to exploit due to their limited
freedom to affect target sinks. The 12 FNs were due to the faulty
usages of sanitization functions that killed tainted data flows. On
the other hand, HiddenCPG discovered these 12 FNs with the help
of isomorphic matching for given queries. These results demon-
strate that HiddenCPG plays a complementary role in finding web
vulnerabilities by matching CPG subgraphs.

RIPS reported 22 TPs with 24 FPs and 22 FNs (0.32 accuracy).
We observed that all identified FPs are the subset of the FPs of
PHPJoern. One FP of PHPJoern was recorded as a true negative in
RIPS because RIPS did not attempt to traverse for every backward
data flow from identified sink functions for efficiency. This heuristic
strategy, however, made it unable to identify one out of 22 FNs. Nine
of the 22 FNs were due to RIPS failing to identify the WordPress
APIs (e.g., wpdb->query()) as sinks. Note that HiddenCPG was
capable of identifying six of these vulnerabilities due to the sink
abstraction process of Phase I (§4.2). The remaining 12 FNs were
the same as the FNs of PHPJoern.

766

	Abstract
	1 Introduction
	2 Code Property Graph
	3 Motivation
	3.1 Technical Challenges

	4 Design
	4.1 Overview
	4.2 Phase I: Building CPGs
	4.3 Phase II: Pruning CPGs
	4.4 Phase III: Matching Subgraphs

	5 Evaluation
	5.1 Experimental Setup
	5.2 Bugs Found
	5.3 Performance

	6 Limitations and Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	9 Appendix
	9.1 Statistics of Benchmarks
	9.2 Correlation Analyses
	9.3 Case Studies for the Bugs Found
	9.4 Comparison against Static Analysis Tools

