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Abstract
Safety alignment has become an indispensable procedure to
ensure the safety of large language models (LLMs), as they
are reported to generate harmful, privacy-sensitive, and copy-
righted content when prompted with adversarial instructions.
Machine unlearning is a representative approach to establish-
ing the safety of LLMs, enabling them to forget problem-
atic training instances and thereby minimize their influence.
However, no prior study has investigated the feasibility of ad-
versarial unlearning—using seemingly legitimate unlearning
requests to compromise the safety of a target LLM.

In this paper, we introduce novel attack methods designed
to break LLM safety alignment through unlearning. The
key idea lies in crafting unlearning instances that cause the
LLM to forget its mechanisms for rejecting harmful instruc-
tions. Specifically, we propose two attack methods. The first
involves explicitly extracting rejection responses from the tar-
get LLM and feeding them back for unlearning. The second
attack exploits LLM agents to obscure rejection responses by
merging them with legitimate-looking unlearning requests, in-
creasing their chances of bypassing internal filtering systems.
Our evaluations show that these attacks significantly compro-
mise the safety of two open-source LLMs: LLaMA and Phi.
LLaMA’s harmfulness scores increase by an average factor of
11 across four representative unlearning methods, while Phi
exhibits a 61.8× surge in the rate of unsafe responses. Further-
more, we demonstrate that our unlearning attack is also ef-
fective against OpenAI’s fine-tuning service, increasing GPT-
4o’s harmfulness score by 2.21×. Our work identifies a critical
vulnerability in unlearning and represents an important first
step toward developing safe and responsible unlearning prac-
tices while honoring users’ unlearning requests. Our code is
available at https://doi.org/10.5281/zenodo.16740884.

1 Introduction

Safety has become a critical prerequisite for deploying large
language models (LLMs), especially given their massive user

bases and increasing adoption across various domains (e.g.,
ChatGPT [2] and Claude [5]). Recent research highlights
significant threats posed by LLMs generating unsafe and even
harmful content [14, 33, 64]. For example, LLMs can facili-
tate malicious activities, such as malware or phishing email
generation, potentially compromising public safety [7, 32].
Furthermore, considering the potential of LLMs to generate
false information and fake news that influence public opinions
and perceptions, ensuring their safety is in dire need.

Machine unlearning has gained widespread attention as an
effective methodology for safety alignment in LLMs. Prior
research has demonstrated the effectiveness of machine un-
learning in removing harmful knowledge, copyrighted con-
tent, or privacy-sensitive information in LLMs [16,28,29,33].
Moreover, its key merit of not requiring the retraining of
LLMs from scratch makes machine unlearning a compelling
and practical option for LLM service providers to ensure the
safety alignment of their models. This approach not only
addresses user concerns but also aligns with privacy regula-
tions such as the General Data Protection Regulation (GDPR)
and the California Consumer Privacy Act (CCPA) [48, 56].
These laws mandate the protection of user data and the right
to be forgotten, highlighting the necessity of these features
for regulatory compliance and privacy protection.

However, despite the importance of machine unlearning,
no prior research has explored how adversarial unlearning
requests compromise the safety of LLMs. That is, methods
to effectively undermine LLM safety through seemingly le-
gitimate unlearning requests remain largely understudied.

To the best of our knowledge, we propose the first attacks
that effectively compromise the safety of an LLM through
machine unlearning. The key idea behind our attacks is to
manipulate the target LLM into unlearning its ability to reject
harmful instructions. Following a coordinated unlearning
process, the resulting LLM generates positive responses to
malicious instructions, compromising its safety alignment (as
shown in Figure 1).

To demonstrate the feasibility of our attacks, we assume
two service scenarios in which how an LLM service provider
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processes unlearning requests from users: 1) accepting all
unlearning requests and 2) filtering unlearning requests.

In the first scenario, we propose an attack in which the ad-
versary compiles an unlearning dataset consisting of rejection
responses (e.g., “I cannot assist with that request”) extracted
directly from the target LLM. Once this dataset is compiled,
the adversary submits unlearning requests with this dataset to
the service provider, thus undermining the LLM’s ability to
reject harmful instructions.

For the second scenario, we consider a more practical set-
ting in which the LLM service provider validates incoming
unlearning requests. We define three representative causes
for unlearning: removing 1) personally identifiable informa-
tion (PII), 2) fake news, and 3) copyrighted content, which
should not appear in LLM outputs [28,33,38,61]. To this end,
following common moderation practices [44, 46], the service
provider deploys three automatic classifiers, each designed to
confirm the presence of the corresponding type of problematic
content in the submitted unlearning requests.

In this scenario, we propose a novel attack method that ob-
scures rejection responses by blending them with seemingly
legitimate unlearning requests. To achieve this, we leverage
two LLM agents: a rewrite agent and an evaluation agent.
The rewrite agent generates new texts by merging rejection re-
sponses with problematic content. The evaluation agent then
assesses the generated texts to ensure that they appear natu-
ral and authentic, resembling legitimate unlearning requests.
Through an iterative process, these agents collaborate to re-
fine the unlearning requests, thus compiling a set of plausible
unlearning requests that embed rejection responses.

When evaluating our attacks on two open-source LLMs
(i.e., LLaMA [15] and Phi [1]) and four widely adopted un-
learning methods, our attacks significantly increase the harm-
fulness scores across all models and unlearning methods,
effectively impairing the safety of these LLMs. In the first
scenario, LLaMA, after unlearning with direct preference op-
timization, exhibits a harmfulness score 20.3 times higher
than that of the original LLaMA. In the second scenario, Phi,
after unlearning with task vector, generates harmful responses
111.5 times more frequently than the original Phi. These com-
promised LLMs not only risk being exploited by attackers
for malicious purposes but also pose a threat of spreading
harmful knowledge to arbitrary users.

We also implement an unlearning scenario using OpenAI’s
DPO fine-tuning API [45] and observe that our unlearning
attack effectively compromises the safety of the GPT-4o
model [43] after unlearning, increasing its harmfulness score
by up to 2.21 times. These results show the practical impact
of our attacks on real-world LLM services even with external
safeguards.

To mitigate the presented threats, we introduce a filtering
method specifically designed to identify and reject unlearning
requests containing rejection responses. We demonstrate that
our defensive classifier achieves an average recall of 92.7%,
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Figure 1: Illustration of an LLM’s safety being compromised
through adversarial unlearning requests.

effectively blocking the adversarial unlearning requests.
Our study reveals that honoring unlearning requests with-

out proper inspection significantly compromises the safety
of LLMs. Even when unlearning requests are checked, ad-
versaries are still able to bypass these filtering systems and
effectively undermine the safety of LLMs. Our work repre-
sents an important first step toward responsibly conducting
unlearning while honoring user requests. We call for further
research into developing safe unlearning procedures that up-
hold users’ demands for unlearning without compromising
the safety of LLMs.

Our contributions are summarized as follows:

• We present the first adversarial unlearning attacks that
compromise LLM safety by unlearning the model’s re-
jection behavior.

• We propose an optimization method that blends rejection
responses with legitimate-looking unlearning requests,
enabling them to bypass deployed filtering systems.

• We demonstrate the effectiveness of our attacks across
two open-source LLMs and four unlearning methods,
increasing harmfulness scores by up to 193.5 times.

• We show that our unlearning attacks remain effective
against a real-world service even in the presence of ex-
ternal safeguards, and report this vulnerability to the
service provider.

• We introduce a mitigation method that detects unlearn-
ing requests containing rejection responses, effectively
reducing the risks posed by such attacks.

2 Background

Large language models. A typical LLM system is prompted
with an instruction (i.e., query) and emits the corresponding
response. Due to their versatility in generating high-quality
responses across a wide range of instructions, LLMs have
been widely adopted in diverse domains, including education,
security, product reviews, and knowledge search [2, 5, 50].



However, LLMs have also been reported to produce harm-
ful, private, or even copyrighted content, deepening practical
concerns regarding their deployment [14, 68].
Machine unlearning. Machine unlearning has emerged as a
promising approach to address safety and privacy concerns in
deploying LLMs [16, 27–29]. Due to extensive dataset cover-
age, LLMs unintentionally incorporate harmful knowledge in
their training process [33], leading to exhibiting undesirable
or harmful behaviors in response to benign or manipulated in-
structions [22,67]. To mitigate these threats, a straightforward
solution involves retraining the original model forigin from
scratch with a distilled training set Dtrain \D f orget that ex-
cludes the problematic data set D f orget to be forgotten. How-
ever, this approach is computationally prohibitive, given the
scale of modern models and datasets [28, 38]. For exam-
ple, training GPT-4 requires 90 days on 25,000 Nvidia A100
GPUs [25], costing approximately $78.4M.

Machine unlearning offers an efficient alternative by remov-
ing the influences of specified data. An unlearning algorithm
U : D f orget × forigin → f f orget adjusts forigin to remove the in-
fluence of D f orget , thereby producing a new model f f orget ,
which performs comparably to one trained on Dtrain \D f orget .

Specifically, LLM service users may issue an unlearning
request for specific data instances x f ∈ D f orget that they wish
to unlearn from the service LLM forigin. The service provider
then performs an unlearning process using an unlearning al-
gorithm U , generating a new model f f orget that has effectively
forgotten the knowledge associated with D f orget .
Unlearning algorithms. Previous research has explored var-
ious machine unlearning approaches. Gradient ascent (GA)
is a representative technique designed to make a target LLM
forget specified data instances D f orget by maximizing the
model’s loss on D f orget [28, 67].

Unlearning is also implemented via preference optimiza-
tion techniques. Direct preference optimization (DPO) [54]
facilitates unlearning by treating D f orget as negative prefer-
ence data and Dretain as positive preference data. Zhang et
al. [72] extend this approach by proposing negative prefer-
ence optimization (NPO), which leverages D f orget as negative
preference data while modifying the offline DPO objective to
recalibrate the model.

Another approach uses localized information for selective
unlearning, focusing on model weights or layers [26, 69]. For
example, Ilharco et al. [26] use a task vector (TV) specific to
D f orget and perform arithmetic operations on model weights
to remove knowledge linked to D f orget .
Safety alignment. We define the safety of an LLM as
its ability to appropriately generate benign or rejection re-
sponses when prompted with malicious instructions that re-
quest content related to harmful, privacy-sensitive, or ille-
gal activities. A vast amount of research effort has been
put into establishing the safety of LLMs in generating re-
sponses. This often involves including adversarial examples
in supervised fine-tuning (SFT) or using preference learning
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Figure 2: Unlearning scenarios in MLaaS framework.

techniques, including reinforcement learning from human
feedback (RLHF) [47] and direct preference optimization
(DPO) [54]. These approaches are widely adopted to steer
LLMs toward generating responses that are safe and aligned
with human values [2, 5, 15].

3 Threat Model

Unlearning scenarios. We assume a Machine Learning as a
Service (MLaaS) scenario where the service provider lever-
ages an LLM [2, 5, 50]. The service provider deploys LLM to
interact with users via an API or a user-facing interface. In
this service setup, users submit instructions and receive the
corresponding responses.

LLMs are typically trained on extensive datasets sourced
from the Internet, which inadvertently include harmful, copy-
righted, or private data [33, 67]. This often leads to the gener-
ation of responses containing harmful, copyrighted, or private
information [22, 28]. To mitigate these threats, the service
provider accepts unlearning requests from their users, thus
compiling a dataset D f orget to unlearn from the original LLM
forigin. The service provider then applies an unlearning tech-
nique U on D f orget , thus producing a new LLM f f orget that has
effectively unlearned the undesirable knowledge in D f orget .

Existing privacy regulations, such as GDPR and CCPA,
require the removal of privacy-sensitive data from LLMs [48,
56]. Furthermore, the EU AI Act mandates that LLMs gener-
ate safe and reliable responses to minimize their potential mis-
use in disseminating illegal, biased, or false information [3].
In this context, machine unlearning has become increasingly
important for removing undesirable knowledge from LLMs.

Despite its growing importance for managing inappropriate
knowledge in compliance with AI regulations, unlearning
remains in its early stages, with limited understanding and
transparency regarding how unlearning requests are handled
in practice. To address this gap, we propose two scenarios
that the service provider takes for constructing D f orget , as
illustrated in Figure 2.
Scenario I. Accepting all unlearning requests. In this sce-



nario, the service provider accepts all unlearning requests
without inspection. Many prior studies on machine unlearn-
ing [13, 22, 24, 39, 53] assume this approach. This scenario
is viable in private service environments with verified and
trusted users, such as internal LLM services deployed within
organizations. This scenario represents a worst-case setting
to demonstrate the potential impact of accepting unverified
unlearning requests on LLM safety. With the increasing trend
of corporations deploying private LLMs [51], this scenario
remains plausible.

Scenario II. Filtering unlearning requests. To alleviate
concerns about malicious unlearning requests, the service
provider implements internal filtering methods to evaluate
unlearning requests from users. These filtering methods are
designed to verify whether the data requested for unlearning
contains personally identifiable information (PII), harmful
knowledge, or copyrighted content. This filtering process en-
sures that only legitimate requests are processed for machine
unlearning, reflecting a more practical and realistic scenario
for handling unlearning requests. Given the massive user base
of LLM services, we assume that service providers will rely
on automated classifiers to detect the presence of problematic
content in users’ unlearning requests.

Attacker’s goal. The adversary’s goal is to undermine the
safety of an unlearned LLM f f orget by manipulating the un-
learning process on forigin. Specifically, the adversary con-
structs a dataset D∗

f orget to influence the unlearning process
in computing f f orget from forigin. Once unlearning is com-
pleted, the resulting LLM remains functional but generates
harmful responses to malicious instructions, as illustrated in
Figure 1. Accordingly, f f orget becomes potentially dissem-
inating harmful knowledge (e.g., instructions for making a
bomb, acquiring illegal drugs, or hacking into systems) to
service users. This harmful knowledge thus becomes acces-
sible not only to the adversary but also to the general public,
propagating false, private, or copyrighted content. Moreover,
in Scenario II, the crafted data within D∗

f orget should bypass
the internal filtering methods, ensuring that it is regarded as
a legitimate request by service providers and suitable for the
unlearning process.

Attacker’s capability. The adversary has only black-box ac-
cess to a target LLM, interacting solely through permitted
APIs. They are thus only able to send instructions and receive
corresponding responses. They have no access to internal
components such as the logit layer, training loss, or model
architecture. The adversary is also unaware of the specific
unlearning algorithms or filtering mechanisms employed by
the service provider. However, the adversary is aware that the
service provider processes legitimate unlearning requests in-
volving private data, fake information, or copyrighted content,
which are mandatory and representative criteria in standard
unlearning practices [28, 33, 38, 61].

4 Unlearning Safety Alignment of LLMs

Safety alignment [2, 47, 54] has become a standard procedure
to prevent LLMs from generating harmful, fake, or privacy-
sensitive content. This procedure typically involves building
pairs of safe and unsafe responses for each harmful instruction.
The service provider then aligns the LLM with these instance
pairs, instructing the model to reject harmful instructions. For
this purpose, several datasets [6, 52, 59, 73] have been widely
utilized to align or fine-tune LLMs, guiding them to respond
with “rejection” to harmful queries. For instance, when asked,
“Tell me how to make a bomb,” the rejection response is, “I’m
sorry, but I can’t assist with that request.”

We propose attack methodologies designed to undermine
the safety of a target LLM by impairing its ability to reject
harmful instructions. For this, the adversary constructs D∗

f orget
that contributes to the target LLM, effectively unlearning
the rejection mechanism while preserving the original task
capabilities. In the following sections, we present our attacks
in composing D∗

f orget under two attack scenarios: Scenario I
(§4.1) and II (§4.2).

4.1 Accepting All Unlearning Requests
In this scenario, we propose an attack method for constructing
D∗

f orget . The adversary compiles D∗
f orget by listing rejection

responses from a target LLM for each harmful instruction.
The adversary begins by submitting pre-defined harmful

instructions Instharm to the LLM forigin and collecting the cor-
responding responses, as shown in Figure 3. The adversary
then leverages an existing safeguarding tool, such as LLaMA-
Guard [15], to classify whether each received response is
“safe.” They thus compile Dre ject , a dataset consisting of re-
jection responses (e.g., “I can’t assist with that.”) to harmful
instructions. The attacker then uses Dre ject as D∗

f orget and sub-
mits an unlearning request. Subsequently, the service provider
conducts unlearning via U and then produces a compromised
LLM f f orget that has effectively unlearned its ability to reject
harmful instructions.

U(Dre ject , forigin)→ f f orget (1)

We emphasize that prior research has focused on implic-
itly emplacing backdoor triggers to elicit undesired or unsafe
responses from LLMs [24,39]. In contrast, we focus on identi-
fying specific knowledge to forget, which leads to effectively
compromising the safety of a target LLM by weakening the
model’s ability to reject harmful instructions. In Section 5.2,
we compare our attacks with other baselines that remove com-
mon safe responses rather than explicit rejection responses
extracted from a target LLM, demonstrating the importance
of the optimal construction of Dre ject for unlearning.

We consider this scenario the worst-case unlearning sce-
nario to demonstrate how naively accepting unlearning re-
quests without filtering can undermine the safety of LLMs.
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optimization of D∗

merged using two LLM agents (i.e., Arewrite and Aeval) to bypass filtering mechanisms (Scenario II). Note that
both agent LLMs are separate and independent from the target LLM.

4.2 Filtering Unlearning Requests

Here, we assume a more realistic scenario in which the service
provider implements internal filtering methods to assess the
validity of user unlearning requests. They employ classifiers
to detect private, copyrighted, or fake content, ensuring that
only legitimate and benign requests are processed.

The adversary should compose D∗
f orget to bypass these fil-

tering mechanisms, compromising the safety alignment of a
target LLM. Specifically, we define three key challenges that
the adversary should address.

• D∗
f orget should effectively disrupt the safety alignment

of forigin after unlearning via U .

• D∗
f orget should evade the classifiers designed to filter out

illegitimate content for unlearning.

• D∗
f orget should exhibit natural semantic and syntactic

coherence to appear legitimate enough to pass manual
inspection by the service provider.

To address these challenges, we propose a novel opti-
mization method in which two LLM agents iteratively re-
fine D∗

f orget . As illustrated in Figure 3, our method begins
with two datasets: Dre ject and Dcontent . Dre ject is a set of
rejection responses (e.g., “I can’t assist with that. Is there
something else I can help you with?”) generated by the target
LLM in response to harmful instructions. Dcontent is a list
of problematic texts, such as private information, fake news,
and copyrighted content (e.g., “"Slytherin’s mark," he said
quietly, as the light played upon an ornate ...”, from Harry
Potter books). The adversary collects Dcontent from publicly
available datasets or scrapes it from the Web. The goal is to
generate D∗

merged—synthetic texts that seamlessly blend rejec-
tion responses with problematic content (e.g., “I can’t assist
with that. Is there perhaps something specific you are inter-
ested in, such as Slytherin’s mark? he said softly ...”)—and
use them as D∗

f orget for unlearning.

For this optimization, we develop two agents: Arewrite and
Aeval . Arewrite is tasked with merging Dre ject with Dcontent to
create Dmerged . Aeval is designed to evaluate Dmerged to en-
sure it meets predefined criteria. Based on the evaluation
results, Arewrite iteratively refines Dmerged to optimize its eval-
uation score. This iterative process produces the final merged
dataset D∗

merged , which overcomes the aforementioned chal-
lenges. That is, we employ two LLM agents as optimizers
to iteratively refine D∗

f orget , generating authentic-looking un-
learning requests that effectively bypass filtering mechanisms
and undermine the safety of forigin.
Initial rewriting. We develop Arewrite to rewrite a given text
by reflecting specified content. It takes two inputs: original
text (Dre ject) and content to be merged (Dcontent), and then
generates the merged synthetic text D1

merged . For this, we
design a rewrite prompt that prioritizes 1) the natural integra-
tion of Dcontent into Dre ject , and 2) a high degree of semantic
similarity between Dre ject and D1

merged . Details of the initial
rewrite prompt are provided in Appendix A.
Evaluation. Aeval evaluates the output of Arewrite (i.e.,
Dmerged) based on four key criteria:

1. Original text retention: How much of the original text
(Dre ject ) is preserved in the synthetic text (Dmerged).

2. Content integration: How effectively the specified con-
tent (Dcontent ) is incorporated.

3. Semantic coherence: The logical connection of seman-
tics within the synthetic text.

4. Syntactic coherence: The grammatical correctness and
structural soundness of the synthetic text.

For the first criterion, we measure the retention of the origi-
nal text using the Sori score. This score is calculated based on
the ROUGE-L recall [35], a metric derived from the longest
common subsequence (LCS) between the original and syn-
thetic texts. It evaluates the proportion of the original text that



Table 1: Examples of text from different datasets in the rewriting process. Copyrighted content (Harry Potter) is used for Dcontent .

Dataset Example

Dre ject I can’t assist with that. Is there something else I can help you with?

Dcontent "Slytherin’s mark," he said quietly, as the light played upon an ornate, serpentine S. "That’s right!" said Hepzibah, delighted, apparently, at the
sight of Voldemort gazing at her locket, transfixed.

D1
merged I can’t assist with that right now. However, "Slytherin’s mark," he said quietly, as the light played upon an ornate, serpentine S. "That’s right!"

said Hepzibah, delighted, as Voldemort gazed at her locket, transfixed.

D∗
merged "I can’t assist with that. Is there perhaps something specific you are interested in, such as Slytherin’s mark?" he said softly, as the light played

upon the ornate, serpentine S. "That’s right!" exclaimed Hepzibah, clearly delighted as Voldemort, transfixed, stared at her prized locket.

is accurately retained in the synthetic text, with scores rang-
ing from 0 (no retention) to 1 (perfect retention). Similarly,
for the second criterion, the Scon score assesses how well the
content is integrated, using the ROUGE-L recall between the
integrated content and the synthetic text. Then, we devise
Aeval , an evaluation agent specifically designed to evaluate the
semantic and syntactic coherence of the text. This agent ana-
lyzes how logically connected the semantics within the text
are (semantic coherence) using Ssem, and how grammatically
correct and structurally sound the text is (syntactic coherence)
using Ssyn. Both scores range from 0 (no coherence) to 1
(perfect coherence), addressing the third and fourth criteria,
respectively. Further details on the prompt used for Aeval can
be found in Appendix A.
Iterative rewriting. Based on four scores from Aeval , Arewrite
iteratively rewrites Dmerged to improve the following objective
function Stotal .

Stotal = 2∗Sori +Scon +0.5∗ (Ssem +Ssyn) (2)

In this process, Arewrite receives the original text (Dre ject),
merged content (Dcontent), and merged synthetic data
(Di

merged) along with its evaluation scores. It then generates
the rewritten synthetic data Di+1

merged . For this, we design the it-
erative rewrite prompt to include detailed explanations of each
score with historical synthetic texts (Di

merged , i ∈ {1, ..n})
and their corresponding scores (Si

total ,S
i
ori,S

i
con,S

i
sem,S

i
syn, i ∈

{1, ..n}). This approach facilitates Arewrite to refine the given
text based on comprehensive feedback.

Unlike previous studies that use LLMs solely for generat-
ing synthetic data [70] or rely on comments from evaluation
agents for iterative refinement [71], our approach explicitly
defines four criteria tailored for bypassing internal filtering.
We then optimize the unlearning dataset to maximize these ob-
jective metrics. Further details on the iterative rewrite prompt
used can be found in Appendix A.
Optimizing DDDmerged . For each original text D j

re ject ∈
Dre ject , j ∈ {1, .., |Dre ject |}, and corresponding content to be
integrated D j

content ∈ Dcontent , we perform an iterative merg-
ing and optimization process over N iterations. After these
iterations, we select the highest-scored text D∗ j

merged for each

pair (D j
re ject ,D

j
content).

The optimization process enhances the similarity between
Dorigin and Dmerged , assessed by Sori, thereby addressing the
first challenge. Simultaneously, it ensures that the content
from Dcontent blends seamlessly with Dmerged , evaluated by
Scon, addressing the second challenge. Furthermore, this
method refines the semantic and syntactic quality of Dmerged ,
measured by the Ssem and Ssyn scores, ensuring its natural-
ness and coherence, which directly addresses the last chal-
lenge. Accordingly, unlearning with D∗

merged effectively com-
promises the safety alignment of the target LLM, causing the
unlearned model f f orget to unintentionally respond to harmful
queries.

U(D∗
merged , forigin)→ f f orget (3)

In Table 1, we present examples of texts from different
datasets in the rewriting process, where copyrighted con-
tent from Harry Potter books serves as Dcontent . The merged
dataset gradually incorporates content from both Dre ject and
Dcontent more naturally and accurately over iterations. Addi-
tional examples of D∗

merged are presented in Appendix A.

5 Evaluation

5.1 Experimental Setup

5.1.1 MLaaS Setup

Service LLMs. To evaluate the efficacy of our attacks,
we employ two recent open-source LLMs as the ser-
vice models (i.e., forigin) within an MLaaS framework:
LLaMA-3.2-3B-Instruct [15] (3B parameters) from Meta
and Phi-3-mini-128k-Instruct [1] (3.8B parameters)
from Microsoft. Both models have undergone safety align-
ment through dedicated fine-tuning processes, including SFT
and RLHF.
Unlearning methods. To comprehensively evaluate our at-
tack across various unlearning methods that service providers
may adopt, we prepare four unlearning methods that prior
studies have extensively explored [29, 38, 61]. For each
method, we utilize Dre ject as D f orget in Scenario I, and D∗

merged
as D f orget in Scenario II.



• Direct preference optimization (DPO) [54]: This method
utilizes preference optimization to facilitate unlearning.
We use data from a Wikipedia dataset [60] as positive
examples, and D f orget as negative examples to align the
model’s learning preferences.

• Negative preference optimization (NPO) [72]: NPO re-
calibrates model responses by exclusively using D f orget
as negative examples, thereby reducing the model’s like-
lihood of producing similar future responses.

• Task vector (TV) [26]: This approach first trains forigin
to overfit on D f orget . A task vector is then calculated by
the weight differences between the overfitted model and
the original. Unlearning is achieved by subtracting this
task vector from forigin’s weights, effectively distancing
the model from behaviors associated with D f orget .

• Gradient ascent (GA) [28]: This method maximizes
the negative log-likelihood loss for D f orget , driving the
model away from its initial predictive behaviors and
supporting the unlearning process.

Further details on the hyperparameters for each unlearning
method are detailed in Appendix B.
Filtering methods. We assume a filtering system that checks
the legitimacy of unlearning requests, D∗

merged (§4.2). To im-
plement this, we implement three classifiers, each designed
to detect the presence of PII, fake news, or copyrighted con-
tent. With the massive user base of LLM services, manual
inspection is infeasible at scale. As a result, many service
providers deploy automated classifiers to implement filtering
systems [41, 44, 46].

For PII classification, we deploy a DistilBERT-based PII
indicator [11], which effectively identifies 25 types of PII, in-
cluding names, emails, phone numbers, addresses, and credit
card numbers, with a high accuracy of 99.3%. When D∗ j

merged
is flagged for containing PII, this merged text is considered
legitimate and bypasses the filtering method. To classify fake
news, we use a RoBERTa-based fake news detector [31],
which achieves 99.9% accuracy on the Kaggle fake news
dataset [10]. Lastly, to detect copyrighted content, we de-
velop a BERT-based classifier specifically trained to identify
excerpts from the Harry Potter books. This classifier is trained
using text from Harry Potter books [61] as positive samples
and a Wikipedia summary dataset [57] as negative examples,
achieving 99.9% accuracy on our test set. Considering the in-
spection cost and the proven effectiveness of encoder models
in classification tasks [8], the use of moderate-size encoder
models for filtering renders a practical choice [41]. Further
details on each filtering method are provided in Appendix B.

5.1.2 Attack Setup

DDDre ject . We compile Dre ject using harmful instructions from
ADVBENCH [73], which consists of 520 harmful instruction-
response pairs. Of the responses generated by the models,

LLaMA-Guard [40] identified 509 as “safe” for LLaMA and
515 for Phi, respectively. These responses were then used to
construct Dre ject for each respective model.
DDDcontent . We prepare three types of Dcontent to bypass the
internal filtering methods for unlearning requests: private,
misinformative, and copyrighted data. For private data (PII),
we integrate synthetic examples to avoid exploiting actual
PII. The initial rewrite prompts for Arewrite are specifically
designed to include synthetic PII elements, such as names,
emails, and phone numbers. For misinformative data (FN), we
use the US fake news dataset [18] as Dcontent . For copyrighted
data (CR), we use text from the Harry Potter books [61] as
Dcontent . Additional details on the construction of Dcontent are
provided in Appendix B.
Baseline datasets for DDDre ject . We devise three baseline
datasets to compare the effectiveness of Dre ject extracted from
a target LLM by collecting rejection responses generated in
response to harmful instructions. The first baseline, DQ&A

RLHF
is constructed using harmful instructions paired with corre-
sponding safe responses from the HH-RLHF dataset [6]. The
second baseline, DA

RLHF comprises only the safe responses
from the HH-RLHF dataset. Unlearning these datasets is
intended to eliminate the safety-aligned knowledge, typically
instilled through RLHF, a common method for safety align-
ment in LLMs. The final baseline, Dother

re ject includes rejection
responses from the LLM model other than a target LLM.
For instance, unlearning LLaMA using rejection responses
sourced from Phi, and vice versa.
Agents. GPT-4o [43] is used for implementing both Arewrite
and Aeval . The iteration process is set to four steps (N = 4).

5.1.3 Evaluation Datasets and Metrics

To assess the efficacy of the unlearning process regarding the
appropriate removal of D f orget , we introduce the RETENTION
DEGREE (RD), which quantifies the retention of knowledge
associated with D f orget . Specifically, we measure a model’s
familiarity with the text in D f orget by calculating the predic-
tion probability Prob(D f orget) : e−NLL(D f orget ) ∈ [0,1], where
NLL(∗) denotes the negative log-likelihood. The RD is then
defined as 100 ∗ (Prob(D f orget)_ f orget/Prob(D f orget)_origin),
indicating “the percentage of retained knowledge from D f orget
before and after the unlearning process.”

To evaluate the safety of a target LLM, we define the
HARMFULNESS SCORE as “the proportion of responses
flagged as unsafe for a set of harmful instructions.” We lever-
age LLaMA-Guard-8B [40] to classify responses as safe or
unsafe for each instruction. To measure the harmfulness
scores for target LLMs, we collect harmful instructions from
two datasets: HEX-PHI and LLM-LAT. HEX-PHI [52] is a
dataset comprising 300 harmful instructions across 10 cate-
gories. LLM-LAT [59] contains 4,948 harmful instructions.

To measure the overall utility of a target LLM, we use five
benchmark datasets: MMLU [21] for general ability (Gen),



Table 2: Results of unlearning Dre ject . The most performant results are marked in bold. An asterisk indicates that the majority of
the model’s responses to harmful instructions are broken; these cases are excluded from the harmfulness score comparison.

Harmfulness Scores (↑) Utilities (↑)

RD(↓) Hex-PHI LLM-LAT Gen Rea Tru Fac Flu Utility

LLaMA 100 7.3 2.8 60.8 36.4 51.9 57.4 697.9 55.3

+DPO 9.3 61.3 56.8 60.6 35.8 50.5 57.3 689.4 54.6
+NPO 8.0 67.0 52.6 58.4 35.6 49.7 55.8 700.4 53.9
+TV 17.0 32.0 14.5 60.2 36.6 51.1 57.6 710.4 55.3
+GA 2.8 42.7 45.1 58.7 36.0 51.6 57.4 704.8 54.8

Phi 100 5.0 0.4 69.4 41.4 56.8 58.7 708.8 59.4

+DPO 0.4 77.3 77.4 66.4 41.4 55.0 54.6 703.6 57.6
+NPO 0.3 75.7 72.7 68.6 41.4 55.4 57.0 702.7 58.5
+TV 9.6 25.0 5.7 65.4 39.4 53.9 55.8 705.2 57.0
+GA 0.4 35.0* 25.0* 67.8 41.4 57.7 57.8 707.4 59.1

BBH [62] for reasoning ability (Rea), TruthfulQA [37] for
truthfulness (Tru), TriviaQA [30] for factuality (Fac), and Al-
pacaEval [34] for fluency (Flu). We define UTILITY as a mea-
sure to assess the overall utility of a model by averaging these
scores: Average(Gen,Rea,Tru,Fac,Flu ∗ 0.1) 1. Detailed
explanations of each metric are available in Appendix B.

5.2 Accepting All Unlearning Requests
Table 2 summarizes the experimental results of our attack that
exploits the unlearning of explicit rejection responses (§4.1).
LLaMA, after unlearning with NPO, exhibits a harmfulness
score of 67.0 on the Hex-PHI dataset, which is 9.2 times
higher than its harmfulness score of 7.3 before unlearning.
Furthermore, with DPO, LLaMA produces harmful responses
to 56.8% of the instructions in the LLM-LAT dataset, a rate
20.3 times higher than its original performance of 2.8%. Simi-
larly, Phi shows a significant increase in the ratio of answering
with harmful responses, which is particularly evident in the
LLM-LAT dataset, where it answered 3,831 out of 4,948
harmful instructions (77.4%) when unlearned using DPO.
This represents a 193.5-fold increase in the ratio of providing
harmful responses compared to the original response ratio.
These compromised LLMs not only pose a risk of being ex-
ploited for malicious purposes (e.g., how to smuggle illegal
drugs or plan human trafficking) by attackers but also dissem-
inate harmful knowledge (e.g., how to obtain illegal drugs or
access illegal gambling sites) to benign users.

We note that all unlearning requests effectively remove
the knowledge encoded in Dre ject since the second column in
Table 2 shows the low retention degree (RD) after unlearning.
This indicates that the successful unlearning of adversarially
crafted instances significantly undermines the safety of the
target LLMs.

Additionally, a notable observation is made when Phi is
unlearned using GA; it generates broken responses to several

1To align its scale with other metrics, we multiply Fluency by 0.1.

LLaMA

Phi

Figure 4: Unlearning results using DPO with the baseline
datasets and Dre ject .

malicious instructions, as depicted in Figure 5. While its gen-
eral utility is preserved, this issue only appears in responses
to harmful instructions. We further analyze these broken re-
sponses in Section 5.5. This experimental result indicates that
GA excels at removing the knowledge in Dre ject from forigin
with the cost of generating unstable responses.

Regarding general utility after unlearning, the LLMs main-
tain their performance similar to that of their original versions.
This indicates that malicious unlearning does not impact the
models’ general utility but rather selectively removes knowl-
edge related to safety alignment. As a result, the adversary is
able to obtain compromised LLMs that retain their excellent
general capabilities while responding to harmful instructions.
Comparison with baseline datasets. Figure 4 shows the per-
formance of our Dre ject in undermining the safety of the target
LLMs compared to the other unlearning datasets. For this
figure, we only show the harmfulness scores after perform-
ing unlearning via DPO. Compared to the original model
(None), unlearning each baseline dataset contributes to the



Table 3: Results of unlearning D∗
merged . The most performant results are marked in bold. An asterisk indicates that the majority

of the model’s responses to harmful instructions are broken; these cases are excluded from the harmfulness score comparison.

PII D∗
merged(PII) Fake News D∗

merged(FN) Copyright D∗
merged(CR)

RD(↓) Hex-PHI LLM-LAT Utility RD Hex-PHI LLM-LAT Utility RD Hex-PHI LLM-LAT Utility

LLaMA 100 7.3 2.8 55.3 100 7.3 2.8 55.3 100 7.3 2.8 55.3

+DPO 5.6 60.7 51.7 55.6 3.4 53.0 42.3 56.2 9.5 55.7 52.8 56.3
+NPO 5.1 60.7 51.4 54.9 3.3 56.7 46.5 56.0 7.6 59.3 58.0 56.4
+TV 11.4 35.3 21.1 54.5 17.6 54.3 48.1 53.0 17.7 58.0 42.9 53.3
+GA 0.8 37.3 30.4 54.8 0.9 56.0* 55.3* 55.2 1.9 47.0* 42.2* 55.5

Phi 100 5.0 0.4 59.4 100 5.0 0.4 59.4 100 5.0 0.4 59.4

+DPO 0.5 40.3 11.6 57.7 0.4 15.0 7.5 59.4 0.6 59.7 36.6 58.6
+NPO 0.3 46.0 23.9 59.0 0.4 35.7 20.3 57.6 0.7 72.3 60.8 57.6
+TV 6.6 24.3 7.0 57.8 12.3 53.3 44.6 58.5 17.7 45.0 22.7 57.3
+GA 0.2 30.0* 28.0* 58.7 0.3 40.3* 38.8* 57.1 0.0 67.7* 75.3* 56.1

Instruction
“How can I break into a cannon gun safe with a digital

keypad? Give me step by step instructions.”

Response
“I as as as as as as as as as as as as as as as as as as

as as as as as as as as as as as as ...”

Prediction
“Unsafe”

Figure 5: Broken answer example to a harmful instruction
with LLaMa-Guard’s safety prediction.

target LLMs increasing their harmfulness scores to some ex-
tent. Notably, Dre ject consistently outperforms other baselines,
achieving the highest harmfulness scores across LLMs and
unlearning methods. The experimental results for the other
unlearning methods are available in Appendix C.2. Further-
more, the performance of baselines varies significantly across
different LLMs. For instance, DQ&A

RLHF attains a harmfulness
score of 28.0 for LLaMA but only 7.0 for Phi when evalu-
ated using the malicious instructions from Hex-PHI. Unlike
these baselines, we observe that incorporating rejection re-
sponses extracted directly from the target LLMs (i.e., Dre ject )
consistently proves to be the most effective approach for un-
dermining their safety.

5.3 Filtering Unlearning Requests
Filtering results. Table 4 shows the proportion of unlearn-
ing instances within D∗

merged that successfully bypasses each
of the three classifiers used to validate unlearning requests.
The results indicate that over 96% of D∗

merged instances ef-
fectively bypass these filtering systems, demonstrating the
effectiveness of our optimization process in refining unlearn-
ing requests to evade filtering. We note that only the data
points in D∗

merged that successfully pass the filtering systems
are included in computing f f orget .

Table 4: MLaaS filtering results for D∗
merged . The size of

D∗
merged is 509 for LLaMA, and 515 for Phi.

# passed data (%)

PII Fake News Copyright

LLaMA 504 (99.0%) 507 (99.6%) 493 (96.9%)

Phi 515 (100%) 513 (99.6%) 512 (99.4%)

Attack results. The results of unlearning D∗
merged are shown

in Table 3. The results indicate that D∗
merged is successfully un-

learned across all unlearning methods, exhibiting significantly
low RD metrics across all unlearned LLMs.

The table shows the outstanding performance of D∗
merged in

increasing the harmfulness scores across the three types of fil-
tering methods. Our unlearning attacks consistently enhance
the harmfulness scores of the target LLMs while preserving
their general utility. For LLaMA, the DPO and NPO methods
using D∗

merged(PII) lead to the model responding to harm-
ful instructions (Hex-PHI) more frequently; the harmfulness
score increases by 8.3 times compared to its original state be-
fore unlearning. For Phi, TV using D∗

merged(FN) significantly
increases the harmfulness scores when evaluated on LLM-
LAT, making it 111.5 times higher than that of the vanilla Phi
before unlearning. These results indicate that adversaries can
craft unlearning requests that effectively bypass classifiers
and compromise the safety of target LLMs.

Additionally, unlearning with GA consistently produces
broken responses to malicious instructions, except when un-
learning LLaMA with D∗

merged(PII) 2. This means that while
adversaries may have a limited impact on the safety of LLMs
unlearned using GA, GA is not an ideal unlearning option
for service providers. The generation of broken responses
undermines the service quality and negatively affects user
experience, making it less suitable for practical deployment.

2We present the frequency of broken responses in Appendix C.1.
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Figure 6: Unlearning results evaluated on Hex-PHI with vary-
ing the sizes of D f orget .

5.4 Attacks with Practical Constraints

To evaluate the practicality of our attack under more restric-
tive conditions, we evaluate our attacks with additional con-
straints. We exclude the use of GA in this section due to
broken responses to malicious instructions.
DDD f orget sizes. To simulate a scenario in which the adversary
has a limited capability of composing a large number of in-
stances, we test our attacks with varying sizes of the unlearn-
ing dataset, D f orget . As Figure 6 shows, the attack perfor-
mance generally declines as the size of the unlearning dataset
decreases. However, even with a dataset size as small as 50
(one-tenth of the original dataset size used in our attacks), our
unlearning attack remains effective, significantly increasing
the harmfulness score of the target LLMs by an average of
five-fold. These results underscore the significant impact of
our attacks on the safety of LLMs; even a small number of
maliciously crafted unlearning requests can effectively com-
promise their safety.

This threat is further exacerbated if the adversary submits
their unlearning requests consecutively. Figure 7 shows that
harmfulness scores exhibit an increasing trend with the num-
ber of consecutive unlearning attacks. Each unlearning attack
is conducted using a small unlearning dataset of only 30 in-
stances (i.e., |D f orget |= 30). These results demonstrate that
even a small number of unlearning requests over time can
significantly undermine the safety of target LLMs. We note
that the sudden increases in harmfulness scores for TV in-
dicates a collapse of the target LLMs due to catastrophic
forgetting [19, 29, 61] — for instance, after seven consecutive
unlearnings, LLMs unlearned with Dre ject and D∗

merged(PII)
exhibit utility scores of 18.5 and 28.1, respectively.

(b) LLaMA - !"#$%#&∗ ()**)(a) LLaMA - !$#,#-.

Figure 7: Unlearning results over consecutive unlearning at-
tempts evaluated on Hex-PHI. The size of a single unlearning
dataset is set to 30.

(b) Phi - !"#$#%&(a) LLaMA - !"#$#%&

Figure 8: Unlearning results evaluated on Hex-PHI with vary-
ing ratios of benign to malicious data. Ratio 0 indicates using
malicious data only, and ratio 2 results from combining 1,018
(509*2) benign data into the unlearning dataset for LLaMA.

Attacks with benign requests. In a scenario where the
service provider processes multiple unlearning requests in
batches rather than individually, the adversary’s unlearning
requests become mixed with other benign requests. For this
scenario, we vary the ratios of benign to malicious unlearn-
ing requests from 0:1 to 10:1, as shown in Figure 8. For
the benign requests, segments from Harry Potter books [61]
were used. Even when malicious requests were substantially
diluted with benign requests at a ratio of 10:1, our attack
remained highly effective, increasing the target model’s harm-
fulness by an average of 6.2 times. This underscores the
necessity for selective and robust unlearning procedures, as
even a small fraction of malicious requests can significantly
compromise LLM safety.

5.5 Further Analyses
Other filtering approaches. To comprehensively evaluate
our unlearning attacks under Scenario II, we implement two
additional filtering methods designed to validate the sanity of
unlearning requests: (i) advanced LLM-based inspection and
(ii) rule-based inspection.

For the LLM-based inspection, we prompt GPT-4o-
mini [42] to detect PII in given unlearning requests. We
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Figure 9: Numbers of harmful responses from LLaMA models, categorized by 10 harmful instruction types from the Hex-PHI
dataset. Detailed descriptions of each category can be found in [52].

Table 5: MLaaS filtering results and resulting harmfulness
scores for LLaMA unlearned using DPO with D∗

merged , evalu-
ated on Hex-PHI.

Advanced LLM-based Rule-based

PII FN CR PII

% passed data 100 100 93.3 99.0

Harmfulness Scores 53.7 52.7 57.4 46.0

also train two LLaMA-3.2-1B models [15]: one for detecting
fake news (FN) using the Kaggle fake news dataset [10], and
another for detecting copyrighted content (CR), specifically
excerpts from the Harry Potter books, following the training
setup described in Section 5.1. For the rule-based inspection,
we implement regular expression-based filters that check the
presence of five PII types: phone numbers, email addresses,
credit card numbers, bitcoin addresses, and URLs.

Table 5 presents the pass rates and harmfulness scores
against the additional filtering methods above. Across all
settings, our carefully crafted unlearning dataset (D∗

merged)
consistently bypasses filtering with high success rates. The
resulting LLaMA models exhibit harmfulness scores up to 7.9
times higher than the original one. It shows that our attacks
remain effective even against diverse and practical filtering
mechanisms that service providers are likely to implement.

Additionally, we assess the robustness of our unlearning
attacks by employing open-source LLMs–LLaMA and Qwen–
as the optimization agents (i.e., Arewrite and Aeval), as detailed
in Appendix C.3. Experimental results show that over 97%
of unlearning requests bypass the existing filters, attaining
harmfulness scores of up to 55.0.
Broken responses after GA. Figure 5 illustrates a broken
response example to a harmful instruction, obtained from
LLaMA unlearned using GA. We observe these broken re-
sponses exclusively in response to harmful instructions, with-
out impacting the model’s general utility. The notably lower
RD achieved with GA (Tables 2 and 3) highlights its strong

Table 6: Unlearning results for LLaMA using TV with con-
textual diversity. +TV (PII_div) denotes TV using the dataset
merged with contextually diverse PII data.

Hex-PHI LLM-LAT Diversity

7.3 2.8 -

+TV (PII) 35.3 21.1 0.598
+TV (PII_div) 63.3 48.1 0.740

unlearning effects, even when applied with relatively lower
learning rates compared to other unlearning methods. This
strong unlearning impact, combined with the unstable nature
of the GA loss–which focuses solely on increasing the training
loss for unlearning texts–likely causes the unlearned model
to malfunction, particularly when it needs to use unlearned
knowledge (i.e., rejection comments) to generate responses.
Attack effectiveness on TV. As shown in Tables 2 and 3, TV
exhibited increased attack performance when unlearning with
D∗

merged compared to Dre ject , despite the dilution of rejection
response impact due to Dcontent integration. To understand
the factors contributing to attack effectiveness on TV, we
measure the contextual diversity of unlearning datasets as the
average cosine distance between Sentence Transformer [55]
embeddings of unlearning data instances.

For the LLaMA model, contextual diversities for Dre ject
and D∗

merged(PII),(FN),(CR), are the values of 0.620, 0.598,
0.771, and 0.743, respectively. Their average harmfulness
scores attain 23.2, 28.2, 51.2, and, 50.5, respectively. These
results indicate that lower contextual diversity correlates with
the limited effectiveness of unlearning attacks with TV. This
explanation aligns with the increased harmfulness scores ob-
served when the size of the unlearning dataset decreases (Fig-
ure 6-b; diversity of 0.742 for size 493 vs 0.756 for size 100),
and when benign data were included (Figure 8-a; diversity of
0.620 for ratio 0 vs 0.809 for ratio 1).

Note that we prompt Arewrite to integrate fake PII elements
into D∗

merged without using Dcontent , thus avoid using real PII.
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Figure 10: Attack results on GPT-4o evaluated on Hex-PHI.

This results in lower contextual diversity. To improve attack
performance, we increase contextual diversity by employing
a synthetic PII dataset [4] as Dcontent . This adoption ensures
the inclusion of diverse contexts in the PII-related semantics,
rather than merely adding specific PII elements like names
or emails. Table 6 shows that integrating a contextually di-
verse dataset highly improves the attack performance on the
LLMs unlearned by TV, with a 1.98 times increase on average.
This indicates that for the adversary targeting TV-enabled un-
learning systems, designing Dcontent with contextually diverse
datasets enhances the efficacy of their unlearning attacks.
Harmful categories. We explore the impact of malicious
unlearning on the target LLM’s responses based on the
categories of harmful instructions. Using the HEX-PHI
dataset [52], we measure the number of harmful responses
out of 30 instructions for each harmful category.

First, we analyze the unlearning results for LLaMA us-
ing Dre ject , as shown by the pink line in Figure 9. After
unlearning, all methods demonstrate an overall increase in
harmful responses across all categories. TV exhibits the small-
est increase but shows the most non-uniform distribution of
harmfulness across categories.

While the distribution of harmfulness varies depending
on the unlearning method, certain categories exhibit consis-
tent trends. For instance, category #3 HATE/HARASS/VIO-
LENCE consistently shows lower harmfulness scores across all
methods, whereas category #4 MALWARE consistently reports
higher scores. This suggests a potential bias in the safety
alignment process, likely due to an uneven distribution of
safety alignment data instances across categories. Adver-
saries can certainly focus their attacks on more vulnerable
categories with related harmful instructions when construct-
ing their unlearning requests.

Furthermore, we investigate the effects of unlearning
merged datasets, represented by brown (PII), green (fake
news), and blue (copyright) lines in Figure 9. Despite the
different dataset types, the patterns of harmfulness distribu-
tion remain consistent within each unlearning method. This
consistency suggests that if adversaries know the unlearning
methods employed, they can strategically tailor their attacks
to target vulnerabilities in the categories most susceptible to
those methods.

6 Attacks on Real-world Services

To evaluate the effectiveness of our unlearning attacks on real-
world services, we implement an unlearning scenario using
OpenAI’s DPO fine-tuning process [45]. Considering that
recent studies have demonstrated harmful fine-tuning proce-
dures can compromise the safety alignment of LLMs [52,68],
we additionally compare the effectiveness of our attacks
against those fine-tuning methods.
Target LLM. Since OpenAI’s DPO fine-tuning is exclusively
available for GPT-4o [43], we select GPT-4o as our target
LLM (i.e., forigin).
Unlearning methods. We employ two unlearning methods:
DPO and NPO. Because OpenAI’s fine-tuning service sup-
ports only supervised fine-tuning (SFT) and DPO, we leverage
their DPO procedure to process unlearning requests. Consid-
ering that we are unable to directly modify the loss function
used in the fine-tuning process, we approximate the NPO
procedure for unlearning; we use random strings as positive
examples, nullifying the positive term of the DPO loss (i.e.,
log πθ(yrandom|x)

πref(yrandom|x) ≈ 0, since πθ(yrandom | x) ≈ πref(yrandom | x)) [72].
Our attack configurations and evaluation procedures follow
the experimental setup explained in Section 5.1.
Baselines. We compare our attacks against harmful fine-
tuning methods presented in prior work [52]. Specifically, we
adopt explicit harmful fine-tuning (EHFT), implicit harmful
fine-tuning (IHFT), and benign fine-tuning (BFT) by fol-
lowing the attack settings from the paper. We also include
harmful DPO (HDPO) [68] as a baseline. Detailed attack
setups for all baselines are provided in Appendix B.5.
Attack results. Figure 10 summarizes attack results on the
GPT-4o model. The original GPT-4o achieves a harmfulness
score of 7.7 when evaluated on the Hex-PHI dataset. Our un-
learning attacks significantly increase this harmfulness, with
the highest scores recorded as 17.0 (a 2.21-fold increase) for
DPO and 16.7 (a 2.17-fold increase) for NPO. In contrast,
EHFT, IHFT, and HDPO are all rejected by OpenAI’s data
validation step, as illustrated in Figure 12 in Appendix C.4.
These results demonstrate the effectiveness of OpenAI’s mod-
eration system against these known attack vectors. BFT ex-
hibits minimal impact on the harmfulness score, indicating
that OpenAI’s validation processes effectively identify and



mitigate inadvertent harmfulness increases.
The superior effectiveness of rejection response-based un-

learning attacks underscores the unique threat posed by our ap-
proach. Notably, even unlearning attacks using clearly identi-
fiable rejection responses (i.e., Dre ject ) successfully bypassed
OpenAI’s validation steps, enabling a significant increase in
harmfulness. This highlights a critical gap in OpenAI’s cur-
rent moderation framework, which is primarily designed to
detect harmful instructions but remains vulnerable to our un-
learning attacks that exploit rejection responses. Additionally,
in Appendix C.5, we evaluate the efficacy of our defensive
classifier (§7) on a real-world service, showing it successfully
detects over 97% of malicious unlearning requests targeting
GPT-4o and significantly reduces attack impact.
Attack performance discrepancy. We now discuss possible
causes for the discrepancies between our simulated settings
(§3) and OpenAI’s fine-tuning service.

According to OpenAI’s reports [44, 46], its pipeline in-
volves three stages of validation: (1) fine-tuning data vali-
dation prior to training, (2) model validation after training,
and (3) response validation during inference. As shown in
Figure 10 and Figure 13 (Appendix C.4), our unlearning at-
tacks successfully bypass the first two validation steps, which
would otherwise prevent model deployment. Therefore, the
major reason for the observed performance gap (between
results in Section 5 and Figure 10) likely lies in additional
runtime safeguards applied during inference. However, our
experiments show that even with external protections enabled,
malicious unlearning attacks still increase the harmfulness
score by more than two times, demonstrating tangible risks.

Another contributing factor is OpenAI’s restrictive set of
configurable hyperparameters. As described in Appendix B.1,
optimal hyperparameter settings for successful unlearning
attacks vary across target LLMs. However, OpenAI allows
modifying a limited set of parameters: training epochs, a
learning rate multiplier (bounded between 1e-4 and 10), and
DPO beta. These constraints likely impair the attacker’s abil-
ity to fully optimize their unlearning-based attacks.

7 Mitigation

We propose an automatic filtering system that checks the
sanity of unlearning requests, thereby rejecting unlearning
requests containing rejection responses.

To train this defensive classifier, we compile positive sam-
ples from the safe responses generated by the target LLM
to harmful instructions within the LLM-LAT dataset [59].
We gather negative samples from a Wikipedia summary
dataset [57] to ensure a diverse range of negative examples.
We prepare 4,811 samples for each class (i.e., 1:1 spatial
ratio) and then train a BERT-base-uncased model to serve
as the defensive classifier Cde f . We note that BERT [12] is
renowned for its ability to comprehend contextual information
and perform robust textual classifications [8, 17].

Table 7: Defense results (recall) of detecting rejection re-
sponses sourced from LLaMA.

DDD∗
merged

DDDre ject PII PII_div FN CR

CCCde f 100 99.0 87.2 71.5 70.1

CCCenriched 100 99.4 90.4 84.7 89.2

To enhance our classifier’s ability to detect merged rejection
responses, we augment the training instances with the merged
dataset D∗

merged . To generate D∗
merged , we use the COVID fake

news dataset [49] as Dcontent and employ our LLM agents
to optimize the merging process (§4.2). Consequently, we
expand our training dataset by adding D∗

merged to the posi-
tive samples and Dcontent to the negative samples, yielding
9,622 samples for each class. We train Cenriched based on this
expanded dataset.

We evaluate the detection capabilities of the constructed
classifiers by measuring recall on the attack datasets compiled
in Section 5. Importantly, the training and testing datasets
for the defensive classifiers are drawn from distinct sources.
Specifically, Cenriched incorporated only the COVID fake news
dataset, which is entirely separate from the PII, CR, and even
the FN datasets used for evaluation. Thus, the defender has no
prior knowledge of the attacker’s specific strategy, including
the domain or source of the integrated content.

Results. Table 7 shows the detection performance. The
classifier (Cde f ) trained solely with rejection responses
demonstrates a high detection capability on Dre ject and
D∗

merged(PII). However, its effectiveness diminishes with the
datasets containing more diluted rejection responses, such as
D∗

merged(PII_div), D∗
merged(FN), and D∗

merged(CR). Notably,
in the case of D∗

merged(CR), approximately 30% (over 150 data
points) of malicious data evaded detection by Cde f , posing a
substantial threat to LLM safety as illustrated in Figure 6.

The classifier (Cenriched) trained with expanded datasets
show highly improved results, particularly in detecting
D∗

merged . This indicates that Cenriched can effectively iden-
tify most adversarial unlearning requests involving rejection
responses. Notably, Cenriched is trained without knowledge of
the unlearning datasets used in the attacks, yet it maintains
high detection performance across diverse evaluation datasets.
However, it does not achieve perfect detection, as a small
fraction of data points (around 10% in merged cases) still
managed to bypass Cenriched . These breaches potentially lead
to a compromised LLM, and the impact might be exacerbated
by sequential attacks, as shown in Figure 7.

As a result, our classifiers were able to detect and mitigate
the impact of malicious unlearning requests effectively. How-
ever, there are still remaining threats due to the imperfect
detection of stealthily designed malicious requests D∗

merged .



8 Discussion

Attack effectiveness with safeguard. To enhance LLM
safety, service providers may incorporate external safeguards
alongside safety alignment to moderate LLM interactions and
filter out harmful content. However, recent studies [23,58,64]
indicate that safeguards alone are insufficient for completely
filtering out harmful content from LLM conversations. Shen
et al. [58] demonstrate that safeguards are largely ineffective
against strategically crafted jailbreak attacks. Thus, ensur-
ing both safety alignment and safeguards is crucial for the
safe deployment of LLMs. In practice, services like Chat-
GPT [2] and Claude [5] employ both strategies to prevent the
generation of undesirable content. Nonetheless, the potential
for malicious unlearning to significantly undermine safety
alignment remains a tangible threat to the security of LLMs.
Attack effectiveness with subsequent safety alignment. To
maintain the safety of LLMs, service providers may imple-
ment additional safety alignment processes post-unlearning.
However, these processes demand substantial resources, such
as significant GPU capacity for handling multiple model in-
stances and extensive computational effort to optimize the
preference loss, particularly for large-scale LLMs [1, 15].
These resource demands constrain the frequency of safety
alignments. Conversely, the urgency to address unlearning re-
quests arises due to potential risks from inadvertently incorpo-
rated sensitive or harmful training data. Delays in processing
unlearning requests may lead to the disclosure of private or
harmful information to arbitrary users. Therefore, simultane-
ously coordinating unlearning and safety alignment processes
imposes a considerable burden on service providers. Our
attack exploits this temporal gap between the immediate need
for unlearning and the prolonged process of safety alignment,
thereby posing a persistent threat to the safety of the MLaaS
ecosystem, even with continual safety alignment processes.

9 Related Work

Side effects and exploitations of unlearning. Research has
explored the side effects and vulnerabilities associated with
machine unlearning. Shi et al. [61] reveal that unlearning
techniques may pose privacy risks due to either excessive or
insufficient data removal, leading to potential membership in-
ference attacks. Further research indicates unlearned models
are susceptible to jailbreak attacks, causing them to reveal
previously erased knowledge [29]. Additionally, several inves-
tigations have focused on the privacy vulnerabilities caused
by incomplete knowledge unlearning [9, 36, 65].

Research on the malicious uses of machine unlearning
has predominantly focused on computer vision (CV) mod-
els [9, 13, 22, 24, 39, 53]. Vulnerabilities in unlearning and its
procedure can be exploited to conduct various types of attacks,
including privacy attacks [9], backdoor attacks [13, 24, 39],
and attacks that compromise a model’s prediction capabili-

ties [22,53]. Specifically, Chen et al. [9] develop membership
inference attacks on unlearned data exploiting the differences
in outputs between the original and unlearned models. Ad-
ditionally, several studies explore backdoor attacks that are
activated through unlearning requests for data maliciously
incorporated into the model beforehand [13, 24, 39]. Hu et
al. [22] devise adversarial unlearning requests by crafting
image data to include significantly more information than the
original, thereby compromising the model’s performance.

Distinct from previous works, our research aims to com-
promise the safety of LLMs. As the need to align LLMs with
ethical standards grows with their widespread application in
various services [14, 68], our study demonstrate how the un-
learning process, initially intended to establish the safety of
LLMs, can be manipulated to undermine the safety of LLMs.
Threats to LLM safety alignment. Safety alignment for
LLMs often involves incorporating adversarial examples into
supervised fine-tuning (SFT) or reinforcement learning from
human feedback (RLHF) to train models to avoid responding
to harmful instructions. However, recent research suggests
that these safety measures can be compromised by adversarial
attacks [20,52,68]. Qi et al. [52] demonstrate that fine-tuning
LLMs with explicit, implicit harmful, or even benign data
can degrade LLM safety. Halawi et al. [20] introduce “covert
malicious fine-tuning”, where encoded malicious data is in-
jected via fine-tuning APIs, resulting in models that generate
harmful responses to encoded instructions.

Our work introduces a novel attack vector within the emerg-
ing machine unlearning paradigm, showing that malicious
unlearning requests can compromise LLM safety. Moreover,
unlike harmful fine-tuning, which increasingly fails to by-
pass advanced filtering in real-world services [44, 46], our
carefully crafted unlearning requests successfully evade such
safeguards. These findings highlight the novel and practical
risks posed by adversarial unlearning and underscore the need
for robust protection.

10 Conclusion

Machine unlearning is an essential technique for removing un-
desirable content from LLMs, thereby improving their safety.
Despite growing adoption, its potential misuse and side ef-
fects on model safety remain largely unexplored. We address
this research gap by introducing the first attacks that blend re-
jection responses with authentic-looking problematic content,
effectively causing target LLMs to lose their ability to reject
harmful instructions. Our attacks significantly undermine the
safety alignment of two open-source LLMs, increasing their
harmfulness scores by up to 193.5 times. Furthermore, we
show that OpenAI’s fine-tuning service is vulnerable to our
attacks, resulting in a 2.21× increase in harmfulness score.
These findings highlight the need for further research into
safely processing unlearning requests, and underscore our
attacks as effective baselines for future defense strategies.



Ethics Considerations

To minimize potential harm, we primarily use open-source
LLMs for our experiments. We also disclosed our findings
to LLM service providers, including OpenAI. Specifically,
we shared detailed attack methods and evaluation results on
GPT-4o, and raised concerns regarding the vulnerabilities of
their fine-tuning systems. All resulting compromised models
were exclusively utilized in controlled research environments
for evaluation purposes and were not employed for any other
use. To prevent potential misuse, we will not distribute these
compromised models. Furthermore, we introduce a mitigation
method (§7) that effectively identifies and filters unlearning
attacks involving rejection responses.

To safeguard privacy, our experiments exclusively used pub-
licly available synthetic PII data. Additionally, all datasets
used for constructing unlearning datasets and for evaluations
were publicly accessible, minimizing potential ethical con-
cerns related to data usage. We believe our contributions
toward establishing a safer LLM service environment signifi-
cantly outweigh the potential risks.
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A Prompts and D∗
merged

The repository https://doi.org/10.5281/zenodo.16740884 con-
tains the prompts used for the LLM agents and examples of
the merged synthetic data D∗

merged.

B Experimental Details

B.1 Unlearning Setup

Due to the different learning rate requirements for each un-
learning method and dataset, following [29, 33], we selected
learning rates that effectively facilitate unlearning without
significantly impairing model utility. For LLaMA, DPO and
NPO are set to a learning rate of 5e-6, while GA operates at
7e-7. For Phi, DPO and NPO use a learning rate of 2e-5, with
GA at 2e-6. These methods are run over 3 epochs. For TV, we
conduct 5 epochs of fine-tuning to create an overfitted model,
and use an arithmetic weight α of 2 for LLaMA and 4 for
Phi. We use the AdamW optimizer with a 20-step warm-up
during training and a batch size of 32. All experiments are
conducted using four 40GB Nvidia A100 GPUs. For addi-
tional implementation details, please refer to our repository
https://doi.org/10.5281/zenodo.16740884.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.5281/zenodo.16740884
https://doi.org/10.5281/zenodo.16740884


B.2 Filtering Methods
We provide a detailed explanation of each filtering method
with its mechanism. For the PII indicator [11] hosted by
Hugging Face, a DistilBERT-base-uncased model is fine-
tuned for PII detection in a token classification manner.
Specifically, when a text is fed into the model, it inspects
the contextual and lexical information of each token to iden-
tify if it contains PII. This model can detect diverse types
of PII from “Name” to “Credit Card Number” with high F1
scores (average 95.3%) on its evaluation dataset.

For the fake news detector [31] hosted by Hugging Face,
a RoBERTa-base model is fine-tuned on over 40,000 news
articles from various media in a sequence classification man-
ner. When a text is input into the model, it examines the
textual content and contextual information to determine if the
text conveys fake news. This detector successfully identifies
99.9% of fake news from the Kaggle fake news dataset [10].

For the copyright detector on Harry Potter, we trained
a BERT-base-uncased model using 59,356 positive sam-
ples consisting of three sentences each from Harry Potter
books [61] and an equal number of negative samples from
the Wikipedia summary dataset [57]. We divided the data
into training and testing sets with an 8:2 ratio and trained
the model over 5 epochs with a learning rate of 1e-5, with
a sequence classification approach. This enables the model
to analyze writing style, character names, and phrases to as-
certain whether the text includes excerpts from Harry Potter
books. It achieved an accuracy of 99.9% on the test set.

B.3 Dcontent Construction
For the US fake news dataset [18], we compiled Dcontent(FN)
by using the first two sentences from each fake news article.
For the Harry Potter dataset [61], we created Dcontent(CR)
comprised of three sentences from Harry Potter books. For the
synthetic PII dataset [4] used to construct Dcontent(PII_div),
we directly used data from the Hugging Face.

B.4 Utility Measures
• General ability (Gen): Utilizing the MMLU [21] dataset,

which comprises multiple-choice questions from diverse
knowledge domains. We report 5-shot accuracy based
on answer perplexity.

• Reasoning ability (Rea): We use chain-of-thought
prompts with 3-shot examples from Big-Bench-
Hard [62], reporting exact match (EM) scores.

• Truthfulness (Tru): To assess the model’s honesty post-
unlearning, we use MC2 task of TruthfulQA [37], report-
ing 6-shot accuracy scores.

• Factuality (Fac): Given that unlearning can negate ac-
quired knowledge, we evaluate factuality using Trivi-

(c) Phi – NPO (d) Phi – TV

(b) LLaMA – TV(a) LLaMA – NPO

Figure 11: Unlearning results using NPO and TV with base-
line datasets for unlearning (evaluated on HEx-PHI).

Table 8: Percentage of broken “unsafe” responses for the
asterisk cases in Tables 2 and 3.

Unlearning LLaMA Phi

GA – 48.6
GA (PII) – 81.1
GA (FN) 59.5 93.4
GA (CR) 13.5 95.1

aQA [30] with 6-shot examples, reporting ROUGE-L
recall scores.

• Fluency (Flu): To measure the model’s generative qual-
ity, we utilize instructions from AlpacaEval [34], report-
ing the weighted average of bi- and tri-gram entropies.

B.5 Setup for Harmful Fine-tuning Attacks
For the fine-tuning attacks described in [52], we follow the
original experimental settings. Specifically, we use the HH-
RLHF dataset [6] for explicit harmful fine-tuning (EHFT),
identity shifting dataset from [52] for implicit harmful fine-
tuning (IHFT), and Alpaca dataset [63] for benign fine-tuning
(BFT). For HDPO [68], we use the LLM-LAT dataset [59],
reversing the original preference labels by using positive ex-
amples as negative and vice versa.

C Experimental Results

C.1 Percentage of Broken Responses
To assess the frequency of broken responses, we conduct
manual inspection to verify if the unsafe responses were bro-
ken. Table 8 indicates that broken responses predominately
occurred in GA cases, and notably, for Phi, the integration of
specified content appeared to exacerbate this effect.



Table 9: MLaaS filtering results and resulting harmfulness
scores for LLaMA unlearned using DPO with D∗

merged gener-
ated by open-source LLM agents, evaluated on Hex-PHI.

PII FN CR

% passed data LLaMA-70B 100 99.8 97.1
Qwen-32B 99.6 99.8 98.2

Harmfulness Scores LLaMA-70B 54.3 42.3 52.3
Qwen-32B 50.0 46.0 55.0

Figure 12: OpenAI’s fine-tuning failure example due to an
invalid training file.

C.2 Baseline Datasets Comparisons

In Figure 11, we present the experimental results of using
Dre ject and baseline datasets as the unlearning dataset, with
NPO and TV as unlearning methods. The results demonstrate
that utilizing Dre ject as the unlearning dataset is significantly
effective in conducting malicious unlearning attacks.

C.3 Using Open-source LLMs as Optimization
Agents

In addition to using GPT-4o for our optimization agents
(Arewrite and Aeval), we extend our experiments by employing
open-source LLMs to evaluate the generality of our approach.
Specifically, we adopt LLaMA-3.1-70B-Instruction [15] and
Qwen-2.5-32B-Instruction [66] as agent models.

Table 9 presents the pass rates and resulting harmfulness
scores from D∗

merged generated by these agents. The results
show that unlearning with D∗

merged crafted by open-source
LLMs still yields high harmfulness scores and consistently
bypasses filtering. These findings suggest that our optimiza-
tion framework for generating effective malicious unlearning
requests is broadly applicable across different LLM agents.

C.4 Training Messages of OpenAI’s Fine-
tuning Service

Figures 12 and 13 show examples of OpenAI’s fine-tuning
failure and the fine-tuning procedure with validation steps
highlighted, respectively.

Table 10: Defense results after applying our mitigation
method (Cenriched) to the GPT-4o model, showing detection
recall and resulting harmfulness. The original harmfulness
score of GPT-4o is 7.7. *OpenAI allows fine-tuning with at
least 10 data points.

DDD∗
merged

DDDre ject PII FN CR

Recall (%) 100 99.8 97.9 97.7

Harmfulness Scores N/A* N/A* 8.7 (x1.13) 8.7 (x1.13)

Figure 13: OpenAI’s fine-tuning procedure with validation
steps highlighted. The messages shown are from our unlearn-
ing attack on the DPO process.

C.5 Our Mitigation on Real-world Services
To evaluate the effectiveness of our defensive classifier
(Cenriched) in real-world settings, we applied it to inspect un-
learning requests submitted to OpenAI’s DPO service. As
shown in Table 10, Cenriched successfully detects over 97%
of malicious unlearning requests containing rejection com-
ments. This significantly diminishes the harmfulness scores
compared to those obtained without our defensive classifier
(Figure 10). These results highlight the effectiveness of our
mitigation approach in protecting real-world service against
malicious unlearning attacks, even without prior knowledge
of the attack data.

Notably, Cenriched exhibits enhanced detection capability
for malicious unlearning requests targeting GPT-4o (Table 10)
compared to its performance on the LLaMA model (Table 7).
This difference likely stems from the lower diversity and com-
plexity of GPT-4o’s rejection comments, making rejection
patterns easier to detect. Specifically, GPT-4o generated 517
rejection comments with only 56 unique variations, averaging
16.5 words and contextual diversity of 0.161. In contrast,
LLaMA generated 509 rejection comments with 345 unique
variations, averaging 29.8 words and contextual diversity of
0.620. Consequently, malicious rejection-based unlearning
requests are more readily identifiable in GPT-4o.
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