
Who Spent My EOS?
On the (In)Security of Resource Management of EOS.IO

Sangsup Lee ∗, Daejun Kim ∗, Dongkwan Kim, Sooel Son, Yongdae Kim

Korea Advanced Institute of Science and Technology (KAIST)
{k1rh4, reset, dkay, sl.son, yongdaek}@kaist.ac.kr

Abstract
EOS is a popular cryptocurrency, whose market cap is over
seven billion USD. Its ecosystem operates in the EOS.IO
system, which is devised to speed up the slow transaction rate
of previous blockchain technologies. Whereas many previous
studies have investigated the security issues of Bitcoin and
Ethereum, the security of EOS.IO has thus far drawn little
attention despite its popularity. Even the studies that have ad-
dressed the security of EOS and its underlying blockchain sys-
tem mostly focused on implementational bugs in the core of
the EOS.IO system or in smart contracts, rather than address-
ing the fundamental problems stemming from the EOS.IO
design.

To address this void in the previous literature, we investi-
gate the design architecture of EOS.IO. Based on this investi-
gation, we introduce four attacks whose root causes stem from
the unique characteristics of EOS.IO, including intentionally
slowing down the block creation time—which can disrupt
the essential functions of its blockchain and incapacitate the
entire EOS.IO system. In addition, we find that an adversary
can partially freeze the execution of a target smart contract
or maliciously consume all the resources of a target user with
crafted requests. We report all the identified threats to the
EOS.IO foundation, one of which is confirmed to be fatal.
Finally, we discuss possible mitigations against the proposed
attacks.

1 Introduction

Recently, cryptocurrency has attracted a great deal of atten-
tion due to its rapidly growing market cap. Bitcoin, often
called the first cryptocurrency, reached a market cap of over
100 billion USD in 2019, and more than 2K cryptocurren-
cies have emerged worldwide, thus representing a combined
value of over 200 billion USD [7]. This surging interest in
the cryptocurrency has also attracted the attention of both
industry and academia for its underlying blockchain system.

∗Both authors contributed equally to the paper

Consequently, many studies have been conducted to analyze
and improve the core technology of each blockchain sys-
tem [6, 10, 27, 30, 32, 38, 43].

The security of the blockchain is another important issue
for which vast research has been conducted. These studies
focused on analyzing double spending [19], network-related
attacks [2, 14], illicit transactions [26], transaction malleabil-
ity [1, 9], selfish mining [12, 13, 22, 36, 44], or smart con-
tracts [18,21,28,40–42]. However, most of these studies have
only focused on the two major cryptocurrencies; Bitcoin and
Ethereum.

EOS.IO is an emerging blockchain system, whose cryp-
tocurrency, EOS, possesses a market cap of over seven bil-
lion USD [7], making it one of the top five cryptocurrencies
worldwide. 1 There have been only a few studies on its se-
curity [4, 17, 25, 33, 35]. The EOS.IO foundation has been
incentivizing researchers through a bug bounty program, but
most of the bugs found so far are related to implementation,
such as software vulnerabilities that an adversary can exploit
to perform arbitrary code execution [33], or logical bugs that
cause a smart contract to deviate from the objectives of its
developers [4, 17, 25]. However, as the design of EOS.IO
is markedly different from that of Bitcoin or Ethereum in
managing system resources, there may exist distinctive and
unexplored threats that stem from the resource management
policies of the EOS.IO system.

To address the lack of research in this area, we chose
EOS.IO as the objective of this study and analyzed its secu-
rity. We first studied the characteristics of the EOS.IO system.
Note that some parts of the EOS.IO whitepaper [10] are out-
dated or ambiguous; hence, we had to manually analyze the
source code to figure out its actual implemented semantics.

To speed up the slow transaction rate of previous
blockchain systems, EOS.IO adopted a Delegated Proof of
Stake (DPoS) algorithm [24], which delegates the consensus
on blocks and execution of the smart contracts to the repre-
sentative nodes, called Block Producers (BPs). This design

1 We checked this at the time of the submission.

decision of using DPoS entails problems of sharing computa-
tional resources among a small number of BPs. To effectively
manage resources and prevent resource abuse, EOS.IO asks
a participant to obtain a resource capacity, such as compu-
tational power, network bandwidth, and storage [10]. Even
though this new means of resource management can effec-
tively support the representative nodes in executing smart
contracts, it raises new concerns about added assets that can
negatively impact the security of the system [16].

Any attack on resource managements that leads to a denial
of service (DoS) is a critical security threat. Many emerging
blockchain systems strive to achieve high Transactions-Per-
Second (TPS) rate, which enables the provision of a short-
latency service for their users and service providers. Incessant
attacks that successfully undermine the availability or TPS
of blockchain services break fundamental requirements that
blockchain service users expect. For instance, stock transac-
tion services or payment services at retail stores demand a
short latency to process financial transactions. Exacerbating
transaction time directly affects the quality of these services,
thus contributing to users choosing other blockchain services.

Therefore, we investigated resource-related threats that ex-
ploit the design architecture unique to EOS.IO. We mani-
fested the capabilities of smart contract providers (SCPs) as
well as their service users and defined an EOS.IO adversary
who is able to conduct the same level of privileged opera-
tions as these participants do. Under this adversary model,
we identified four possible attack scenarios: block delay, SCP
CPU-drain, SCP RAM-drain, and RAMsomware attacks. In
these attacks, an adversary intentionally incapacitates the en-
tire EOS.IO system with a crafted smart contract, an adversary
depletes or drains the resources of a smart contract provider
so that this victim no longer provides the service, and a ma-
licious smart contract provider surreptitiously replaces the
original smart contract with another one to steal user assets.

In order to address these attacks, we analyze their causes
and propose several mitigations. These mitigations include
simple preventative measures along with suggestions for sys-
tematic changes of EOS.IO. We believe that the proposed
mitigations can prevent the attacks described in this paper as
well as potential future threats.

In summary, our contributions are as follows:

• We present the block delay attack, a novel attack that
exploits a transaction scheduling policy of the EOS.IO
system. This attack is able to delay all transactions in
the system, thus resulting in the DoS.

• We introduce two new attack methods: SCP CPU-drain
and SCP RAM-drain attacks. These attacks exploit re-
source management policies unique to the system, thus
disrupting services from a target smart contract provider.

• We present the RAMsomware attack scenario that abuses
controversial design decisions of the system. The at-
tack allows locking EOS-RAM resources of a target user,

SCsystem
SC

SC

Block Producer (BP)

RAM

Smart Contract
Provider (SCP)

Users

Smart Contract (SC)

2���	���1�	�

transaction (trx)

��2
��	����

Blocks

trxtrx

Figure 1: Architecture of EOS.IO

which enables an attacker to ask a ransom in exchange
for releasing the locked EOS-RAM resources.

• We demonstrate the feasibility of each attack and esti-
mate the impact of each proposed attack scenario based
on experiments conducted in a local EOS.IO system.

• We propose preventative measures as well as a redesign
of the EOS.IO system to mitigate the proposed and po-
tential threats.

2 Background

2.1 EOS.IO overview
EOS.IO is a blockchain system for a cryptocurrency called
EOS. In this section, we describe the main characteristics of
EOS.IO. As some parts of its whitepaper [10] are outdated
and ambiguous, we interpret them based on our judgment by
carefully analyzing the EOS.IO source code. Figure 1 illus-
trates a simplified overview of the EOS.IO ecosystem. The
main difference between EOS.IO and the other blockchain
systems lies in its consensus algorithm, which is the core of
the blockchain system. Unlike the other blockchain systems
of the top cryptocurrencies in the market [7], EOS.IO adopted
Delegated Proof of Stake (DPoS) [24] as its consensus al-
gorithm. DPoS delegates the role of a node in a blockchain
system to a small number of representative nodes, known
as Block Producers (BPs). Among the nodes in the EOS.IO
network, 21 BPs are selected through a voting procedure;
these BPs are responsible for deciding whether newly cre-
ated blocks can be attached to the current chain. With DPoS,
EOS.IO is able to significantly speed up its transaction rate.

Another feature of EOS.IO is its ability to execute a smart
contract (SC), which is essentially a program developed by
a user. It is similar to those supported by the Ethereum plat-
form [43]. In this paper, we call the developers of SCs as

Smart Contract Providers (SCPs). In the EOS.IO system, if
a user wants to execute an SC, s/he can send a transaction
to one of the BPs in the EOS.IO network. This transaction
consists of several actions that specify a target SC and the
parameters for the execution of the SC. When the BP receives
the transaction, it executes the requested SC after fetching
the SC from the EOS.IO chain and creates a new EOS.IO
block that stores the execution results. Then, the new block is
propagated to the other BPs through a broadcasting procedure.

2.2 EOS.IO smart contract
An SC often refers to a computer program that executes on a
blockchain system or a distributed ledger. Many blockchain
ecosystems, including Ethereum and EOS.IO, support the exe-
cution of a given SC for various purposes, including banking,
gambling, initial coin offerings (ICOs), and trading in the
marketplace [8].

The design of Ethereum, the most popular blockchain sys-
tem that supports SCs, demands that every SC in their system
should be unchangeable; thus, it allows no revision not even
for updating the source code or fixing vulnerabilities in the
SCs. Therefore, SCPs, in practice, dispose of their SCs and
create new ones in order to patch inherent bugs.

On the other hand, EOS.IO allows SCPs to modify their
SCs. However, this design decision entails another problem
that SCPs are able to change the semantics of their SCs, which
are then executed by users without any active notification of
the change. Therefore, users have few options but to com-
pletely trust SCPs to execute their SCs while understanding
that these SCs may be changed at any time.

The option still remains for users to analyze an SC to un-
derstand its semantics before executing the SC; however, SCs
in the EOS.IO system are binary programs compiled in the
form of Web Assembly [5], which makes the understanding
of their semantics difficult. Furthermore, SCPs are under no
responsibility to open the source code of their SCs. According
to one of the EOS.IO explorers called EOS Park, only 10% of
SCPs release their source code publicly [11]. These charac-
teristics of EOS.IO make it difficult for users to analyze each
SC, further contributing to users having no choice, but to trust
the goodwill of SCPs.

2.3 Resources of EOS.IO
Every transaction and execution involving SCs in the EOS.IO
system consumes resources. By design, the system abstracts
its resources into three items: computational power, network
bandwidth, and storage. For convenience, in this paper, we
call these as EOS-CPU, EOS-NET, and EOS-RAM, respectively.
When a user directs a transaction to run an SC, the user should
already have enough resources for the consumption by the
SC, called transaction costs. Therefore, the platform asks par-
ticipating SCPs and users to purchase EOS-RAM or to stake

EOS-CPU and EOS-NET. Here, staking refers to an action of
allocating a certain number of EOS tokens (i.e., EOS cryp-
tocurrency) to reserve BP resources.

EOS.IO adopted this mechanism to effectively manage the
constrained resources of the BPs and prevent resource abuse.
More specifically, when a user stakes EOS tokens, EOS.IO
distributes the capacity of the resources to a user proportional
to the tokens staked by this user. For example, if a user staked
1% of the total staked EOS tokens, then the user is allowed to
use 1% of the total resource capacity as well. Staked tokens
do not disappear but are marked as staked in the system. That
is, a user can unstake his/her tokens anytime, and the tokens
become available after three days. At the time of unstaking,
the staked EOS-CPU and EOS-NET are also released. On the
other hand, the tokens of the purchased EOS-RAM are not
returned. EOS-RAM is storage for the data used within an SC,
and the user can refund EOS-RAM only if the data used in the
target SC is removed. Therefore, a user should consider using
his/her resources wisely.

2.4 EOS resource payment

The underlying design philosophy for EOS.IO is Receiver
Pays, denoting that SCPs should pay for the usage of their
SCs by users. More specifically, a user only pays for the ini-
tial transaction cost, while the SCP pays for the other costs
of the subordinate transactions which come within the first
SC. Consequently, the costs of running SCs become the busi-
ness costs for which SCPs should be responsible. SCPs stake
their EOS-CPU and EOS-NET for the users who execute their
SCs, and the amount of staked resources strongly affects the
number of processed transactions from users.

However, it is burdensome for those SCPs who require
a large amount of EOS-CPU and EOS-NET to execute their
SCs. In such cases, SCPs can delegate the resource usage
to users. Even though EOS.IO enables the SCPs to delegate
the transaction costs to the users, it requires an additional
permission, called the eosio.code, from the users. If this
permission is given, an SCP can control all the resources of
a user, including EOS tokens. As a result, since most users
would not want to give their permission to an SCP, many SCPs
follow the Receiver Pays model by paying for the business
costs during the execution of their SCs.

3 Attack Model

We assume an EOS.IO adversary who utilizes the same func-
tionalities of the EOS.IO system as SCPs and their service
users do. That is, the adversary is able to implement and man-
age her own SCs, or to execute other SCs. The adversary can
also entice victims to send a transaction that triggers the exe-
cution of a crafted SC. Furthermore, the adversary is capable
of updating the crafted SC anytime to leverage the misplaced

trust of the victims who only examined the previous SC before
the update.

One goal of the adversary is to deplete available resources
of SCPs, such as EOS-CPU, EOS-NET, or EOS-RAM, thus caus-
ing the denial of service (DoS) for these SCPs. The adversary
also aims to cause delays in block generation in BPs, because
such delays significantly undermine the service availability
of the EOS.IO system.

Consider SCs for stock trading or banking services, which
demand a short latency for task completion. In such services,
any system delay can potentially lead to a significant finan-
cial loss as transactions that should be processed within a
short time cannot be processed. Furthermore, the adversary
could also plunder the resources of the victims and demands
a ransom.

Note that our adversary model is similar to those used
in the previous studies that exploit SC bugs [18, 21, 28] in
Ethereum or cause double spending in Bitcoin with spam
transactions [37], except that the adversary is able to update
the crafted EOS.IO SC.

4 Attacks

We present four novel attacks against the EOS.IO system.
The block delay (§4.1) attack undermines service availability
of BPs, thus contributing to block generation delays in the
EOS.IO system. The SCP CPU-drain (§4.2.1) and SCP RAM-
drain (§4.2.2) attacks deplete the resources staked for the
execution of SCs, including EOS-CPU and EOS-RAM, thus
resulting in the denial of SC services. The RAMsomware
(§4.3) attack exploits the controversial EOS design decision
that allows SC updates. The adversary starts by obtaining
the sensitive permission with her benign SC code and then
changes it later to deplete the EOS-RAM of the victims. The
adversary may then ask a ransom for releasing victims’ EOS-
RAM. We emphasize that all the presented attacks harness
attack vectors unique to EOS.IO.

In this section, we describe each attack and demonstrate
its feasibility with an attack experiment that measures its
potential impact on EOS.IO.
Experimental setup. We conducted experiments to measure
how much loss each attack can cause in EOS.IO. We used a
machine running 64-bit Ubuntu 16.04.3 LTS with Intel Core
i7-8700 CPU at 3.20 GHz (12 cores), 32 GB of RAM, and
200 GB SSD. For the testing environment, we prepared two
different versions of EOS.IO on the machine: version 1.1.1,
where we discovered the block delay attack, and version 1.7.3,
which is the latest stable version to confirm the patch for the
block delay attack and to test the feasibility of other attacks.
Each version of EOS.IO is initialized with default system SCs
that manage the resources of EOS.IO and the execution of
other SCP-provided SCs. Note that we have never conducted
the presented attacks against the actual EOS.IO system in

Transactions
(trx)

send_deferred (A)

Succeeded
state

Exhausted
state

T+0.5sTimer (T) T+0.5s T+0.5s T+0.5s T+0.5s

A
Queue

,FI E�,-I?N @-

Block

N send_deferred (A)

send_deferred (A)

Figure 2: Overview of the block delay attack.

production for ethical and respectable research.
Collected SCs. We collected 3,212 SCs from 3,600 accounts
in the EOS.IO main network and installed them in our testing
environment.

4.1 Block delay attack

The block delay attack causes a delay in the production of
blocks in a BP by generating an unacceptable number of
spurious transactions. These spurious transactions elicit mis-
behaviors in the BP when scheduling them, thus usurping
opportunities that should have been used for processing valid
transactions. This entails huge financial losses for participants
in EOS.IO by delaying the transactions that require immediate
completion. We note that this attack targets all SCs running in
BPs, not a particular SC, which makes the attack even more
critical.

A DoS on any blockchain system is indeed a critical se-
curity threat, as many emerging blockchain systems strive to
provide a high-availability service with a high TPS. Because
the EOS.IO system only depends 21 representative BPs to
process worldwide transactions, the DoS on a single BP may
cause a significant TPS degradation. We first describe the
EOS.IO block generation procedures and then explain how
the block delay attack exploits the procedures.
Block generation procedures. The EOS.IO system has two
internal policies; 1) a BP should generate a block within every
0.5 seconds; 2) a BP limits its resource usage for processing
transactions within a block. Specifically, EOS.IO limits the
execution time as well as the amount of EOS-CPU and EOS-
NET for processing transactions within a single block.

To enforce these block generation policies, EOS.IO has
four internal states, including succeeded and exhausted states.
We only explain these two states relevant to initiate the block

delay attack. In the succeeded state, a BP generates a block for
every 0.5 seconds. When a BP completes given transactions
earlier than 0.5 seconds, it waits further and then propagates
the resulting block to other BPs. If the resource usage for
processing transactions within a block is over a specified
threshold, it switches its state to the exhausted state and gen-
erates as many blocks as possible without any waiting time to
maximize its computation resources.

A block generation delay arises when the exhausted state
is changed back to the succeeded state after a large number of
blocks are generated in the exhausted state. This delay stems
from the time gap between the timestamp specified in a block
and the actual time when the block is generated. For each
block, EOS.IO specifies a timestamp with the multiplication
of the fixed time interval (0.5 seconds) with the number of all
generated blocks in the entire EOS.IO system that precede
the current block. That is, a BP in the exhausted state could
create a block of which timestamp indicates a future time,
when the BP creates more than one block within 0.5 seconds.
When the state is changed back to the succeeded state, the BP
attempts to generate a new block with a future timestamp. It
then pauses its block generation until the real time matches
the timestamp of this new block.
Attack conditions. In order to intentionally invoke such a
block generation delay, the attack should 1) change the suc-
ceeded state to the exhausted state, 2) make the BP to generate
a large amount of blocks in the exhausted state, and then 3)
change the BP back to the succeeded state.

By carefully analyzing the EOS.IO system, we found that
an adversary could easily conduct the block delay attack by
abusing two EOS.IO features: deferred transactions, and smart
contract updates.

In general, a BP executes a requested transaction right
away, however, a deferred transaction is scheduled later for
its execution [10]. The original purpose is to move computa-
tions into different shards or to create a long-running process
for continuance transactions. To initiate a deferred transac-
tion, an SC invokes send_deferred(), which makes a new
asynchronous transaction on a BP. Suppose an adversary im-
plements a malicious SC that recursively invokes multiple
deferred transactions of itself. The execution of this SC causes
an exponentially increasing number of crafted transactions,
as Figure 2 illustrates. When a BP receives such a large num-
ber of transactions, its resources eventually runs out and the
BP changes its state to the exhausted state.

After producing numerous transactions, an adversary
changes the crafted SC to a totally different one. This change
renders all the queued transactions from the original SC in-
valid because those transactions still attempt to call methods
in the original SC which no longer exists. Therefore, the BP
in the exhausted state marks the spurious transactions as in-
valid and immediately process them, thereby generating a
large amount of blocks. Consequently, these spurious blocks
generates a huge gap between the timestamp of the last block

Table 1: Estimated financial loss by the block delay attack

Block
Count

Attacker Victim

Time†

(min)
EOS-CPU

(min)
EOS-NET

(MiB)
Cost‡

(EOS)
Delay
(min)

Loss∗

(EOS)

376 0.92 1.23 16.13 480 2.05 40,802
704 2.06 2.32 34.72 910 3.56 70,856

1,106 3.02 3.65 50.82 1,426 5.67 112,851
1,471 4.00 4.85 65.53 1,894 7.46 148,478
1,840 5.04 6.07 79.69 2,368 9.12 181,518

∗ We estimated the loss of EOS.IO from the total volume of traded EOS
tokens in April 2019.
† As this attack creates a large number of transactions, it was difficult to
precisely control the attack duration.
‡ The attack cost is estimated by multiplying the total staked EOS tokens by
the ratio of the used EOS-CPU and EOS-NET to their total capacity.

and the real time. When the BP comes back to the succeeded
state, the BP pauses its further block generation. Consider that
a BP generates each one of 100 blocks for 0.2 seconds in the
exhausted state, thus taking 20 seconds (0.2∗100). The times-
tamp of the last block must be set to 50 seconds (0.5∗100),
thereby producing the time gap of 30 seconds. As a result,
the BP should delay its next block generation for 30 seconds
when the state changes back to the succeeded one. As the
adversary is able to manage the number of blocks with the
deferred transaction, she can impose an arbitrary delay time,
resulting in the DoS of the BP under the attack.

We conducted experiments to measure the extent of the
losses that this attack can cause to the EOS.IO system. We
created a malicious SC that internally makes six deferred
transactions that invoke the SC itself, thus causing every sin-
gle transaction to invoke the execution of the same SC six
times.

Table 1 summarizes the experimental results. The block
count describes the total number of blocks created during the
attack. The Attacker columns describe the time and EOS.IO
resources consumed during the attack. Note that the exact
number of required EOS tokens can vary depending on the
total number of staked EOS tokens (see §2.3). Here, we cal-
culated them using the required values of EOS-CPU and EOS-
RAM in the real EOS.IO system at the time of the submission.
However, since the EOS tokens are returned after unstaking
EOS-CPU and EOS-NET as described in §2.3, the cost of the
attack can be considered as zero. The Victim BP columns
show the time delay of the BPs and the expected number of
EOS tokens that are not traded due to the corresponding delay,
respectively. We estimated the loss based on the number of
actual EOS tokens conducted in the main EOS.IO network.
The equations for calculating the delay time (Tdelay) and the
estimated loss (Eloss) are shown as below:

Emin = EApril/((60 mins)∗ (24 hrs)∗ (30 days))

Tdelay = (Tlimit ∗Nblocks)−
Nblocks

∑
i=1

Tblocki

Eloss = Emin ∗Tdelay

EApril represents the number of EOS tokens actually signed
in April 2019, which was 859,821,765, and Emin represents
its one-minute average; Tlimit is the time limit for executing
each transaction in EOS.IO, which is 0.5 seconds; Nblocks is
the number of blocks created, and Tblocki is the execution time
of i-th block during the attack.

The consequences of the attack are severe since a single
adversary running the attack for 5 minutes with 2,368 EOS
tokens causes a financial loss of 181,518 EOS as well as
undermines the service availability for nine minutes. Note
that the cost of the attack is zero since the resource of the
adversary spent for the attack is returned in the very next
day. In addition, coordinated attacks targeting many SCs can
certainly cause the DoS at all BPs. We reported this bug to
the EOS.IO foundation, and they marked it as one of the most
critical bugs.

The EOS.IO developers patched this bug by adding a times-
tamp check for each EOS.IO block generation. This patch
makes a BP to compute the expected time for a newly gen-
erated block and checks whether the difference between this
expected time and the real time is within 0.5 seconds. If so,
the BP generates the next block without any delays. Other-
wise, it waits until the real time reaches the expected time.
This check prevents a block generated in the exhausted state
from having a future timestamp.

4.2 DoS by draining EOS resources
This section presents two DoS attacks: SCP CPU-drain and
SCP RAM-drain attacks. Both attacks aim to undermine the
service availability of a target SCP by draining staked EOS-
CPU and EOS-RAM, respectively.

4.2.1 SCP CPU-drain attack

We present a novel attack that depletes all the EOS-CPU staked
for the execution of a target SC, thus making this SC unavail-
able for further execution. The goal of the adversary is to
render the target SC unavailable for any BP by depleting all
the EOS-CPU staked by the SC owner in exchange for the
EOS-CPU staked by the adversary. We refer to this attack as
an SCP CPU-drain attack.

An SC often invokes send_deferred() that generates a
deferred transaction for the execution of another SC. By de-
sign, this execution of an SC requires EOS-CPU from 1) the
user who initiated the transaction or 2) the SCP of the original
SC. However, spending EOS-CPU belonging to a user requires

Table 2: The amount of EOS-CPU and EOS-RAM consumed in
the SCP CPU-drain attack

Attack
Count

Attacker Victim SCP

EOS-NET
(KiB)

EOS-CPU
(ms)

EOS-NET
(KiB)

EOS-CPU
(ms)

1 0.137 0.146 3.562 0.400
10 1.329 1.485 3.555 4.336
20 2.655 2.938 3.549 8.352
30 3.980 4.474 3.544 12.53
50 6.626 7.422 3.534 20.74

100 13.21 15.23 3.509 41.19

the consent of this user that grants the eosio.code permis-
sion [10] to the SC. Because this permission is so sensitive
that it allows the SC to manage the EOS tokens of the user,
users are naturally hesitant to grant this permission. Therefore,
SCPs often use their staked EOS-CPU for deferred transac-
tions to facilitate the wide adoption of their SCs. When the
staked EOS-CPU of an SCP is exhausted, the corresponding
SC becomes unavailable for 24 hours.

The SCP CPU-drain attack exploits this feature, by continu-
ously consuming the EOS-CPU of the victim SCP. As a result,
the attack is cost-effective if the total use of the staked EOS-
CPU of the victim SCP is greater than that of the adversary.
The adversary could also speed up the attack by creating an
SC that recursively calls itself as well as the target SC similar
to the block delay attack.

To demonstrate the tangible threat of the SCP CPU-drain
attack, we sampled one of the vulnerable SCs 2 among the
SCs that we collected from the main EOS.IO network. In
order to do this, we manually analyzed a few SCs to check if
a send_deferred() function call exists at the beginning of
the SC without a proper user validation.

Table 2 shows the experimental results. During the experi-
ment, we varied the number of calling the target SC from 1
to 100. When we conducted the attack once, the consumed
EOS-CPU of the victim SCP (11.50 ms) reached almost three
times as much as that of the adversary (4.136 ms). The gap in
EOS-CPU between the attacker and the victim SCP increases
almost at an almost constant rate. This result demonstrates the
feasibility of the SCP CPU-drain attack that an adversary can
intentionally dry off the victim using only a small EOS-CPU
amount.

4.2.2 SCP RAM-drain attack

We present another threat that allows an adversary to deplete
the EOS-RAM of a victim SCP by inserting spurious data,
which results in the DoS for the SCP. We refer to this attack
as an SCP RAM-drain attack.

2We intentionally omitted the SC name in the SCP CPU-drain attack.

RA
M

 (M
iB

)

0

4

8

12

16

20

Second (s)
0 3 6 9 12 15 18 21 24 27 30

Attack N Attack 2^N

RA
M

 (M
iB

)

0
0.4
0.8
1.2
1.6

2

Second (s)

0 1 2 3 4 5

�1

SCA SCB

Figure 3: The amount of EOS-RAM consumed by the SCP
RAM-drain attack.

Compared to other blockchain systems, EOS-RAM is an-
other unique component of EOS.IO that abstracts the available
data storage for executing an SC. Unlike EOS-CPU, SCPs are
able to choose either themselves or other users who execute
their SCs to pay for the cost of storing user data without any
permission.

In addition, EOS.IO stores data in the form of a key-value
pair, as in general database systems. Thus, it is recommended
that one should properly create a unique key for each data
insertion to prevent storing duplicated data. When an SCP
chooses to pay for his/her SC instead of the user without
such consideration, his/her SC can become vulnerable. That
is, an adversary can keep storing spurious data to EOS-RAM
by exploiting this vulnerable SC until there is no remaining
EOS-RAM purchased by the SCP, which eventually causes the
DoS of the vulnerable SC.

Among the collected SCs, we manually searched ones that
use the EOS-RAM of SCPs and implement no measure to
prevent the same user from storing unlimited data. We ex-
perimented one vulnerable SC 3 as a case study to show the
feasibility of the SCP RAM-drain attack.

To conduct the attack, we implemented two additional
SCs and compared their efficacy. SCA sends the vulnerable
SC a transaction that stores spurious data at the EOS-RAM
staked by the SCP of the SC. It then invokes itself via one
send_deferred() call. SCB does the same as SCA, however,
it invokes send_deferred() twice, thus executing two in-
stances of the SC at once.

Figure 3 shows the experimental results. As the graph
shows, the slope of SCB is much steeper than that of SCA.
It only took 30 seconds to deplete 20 MB for SCB. The actual
efficacy of the SCP RAM-drain attack can differ depending

3We intentionally omitted the SC name in the SCP RAM-drain attack.

RA
M

 (M
iB

)

0

400

800

1200

1600

2000

Seconds (s)
0 2 4 6 8 10 12 14 16 18 20 22

RA
M

 (M
iB

)

0

400

800

1200

1600

2000

Seconds (s)
0 2 4 6 8 10 12 14 16 18 20 22

�1

Figure 4: The estimated EOS-RAM loss by the RAMsomware
attack.

on how much of EOS-RAM is consumed and how the execu-
tion logic is implemented; however, this is only a matter of
time.

Once the EOS-RAM of the attacked SCP is exhausted, the
function for the SC to use EOS-RAM becomes no longer avail-
able. Here, the SCP can operate the SC again by purchasing
additional EOS-RAM; however, this is only a temporary mea-
sure. To sort out this problem, SCPs should add a proper
defense mechanism by modifying the source code of the SC
and have to delete all the EOS-RAM tables which may contain
valuable user data.

4.3 RAMsomware attack
We present the RAMsomware attack, a new threat that enables
the adversary to take possession of the resources of victims
including EOS tokens, EOS-CPU, and EOS-RAM, leveraging
misplaced trust in SCs. This attack takes advantage of the fact
that the SC of the adversary for executions can be different
from the SC for which a victim granted the eosio.code
permission for privileged operations. This is a classic time-
of-check to time-of-use (TOCTOU) attack.

The adversary begins the attack by uploading a benign SC.
This benign SC requests the eosio.code permission from
users for further execution. As described in §2.4, users do not
want to grant their permission to SCPs in general. In order to
get the eosio.code permission, the adversary can publish the
source code of the benign SC and obtain a safety inspection;
there exist third-party services that test the security of the
submitted SCs [11]. The adversary then promotes this benign
SC on his/her own website along with the safety inspection
results. A victim checks the published code as well as the
inspection results and decides to grant the permission to this
SC. Later, the adversary switches the SC to a malicious one,
but the victim does not recognize this change. Thus, the victim
is highly likely to run this changed SC. However, the EOS.IO

system does not warn or notify the victim of any code changes
made by the adversary. This attack stems from the design
decision of EOS.IO that allows an SCP to update and revise
their SC without notifying users of such SC changes.

One attack scenario is to lock the EOS-RAM of victims for
ransom. Assuming that the adversary is capable of obtain-
ing the eosio.code permission from victims, the attack SC
can call itself repeatedly via send_deferred() while storing
spurious data using the EOS-RAM of the victim until they are
completely exhausted. Unlike EOS-CPU or EOS-NET which
are restored every 24 hours, the EOS-RAM will be locked
until the adversary releases their usage. Therefore, the adver-
sary can ask a ransom in exchange for returning the locked
EOS-RAM.

We conducted an experiment to check the feasibility of this
attack in our testing environment. We prepared a ransomware
SC and a victim account that grants the eosio.code per-
mission to this SC. To fasten the completion of EOS-RAM
exhaustion, we used the same methodology described in §4.1,
whereby the attack SC recursively invokes send_deferred()
multiple times. As Figure 4 shows, it took only around 22
seconds to deplete 2 GB of EOS-RAM, which is the EOS-RAM
capacity of the user with the most EOS-RAM when excluding
the EOS.IO foundation [11].

5 Mitigation

In this section, we propose mitigation methods for the pre-
sented attacks. We first enumerate precautionary suggestions
that require no changes to the current EOS.IO system. We
then discuss several design changes to the EOS.IO system to
remove the root causes of the attacks presented herein.

5.1 Preventative measures against attacks
The SCP CPU-drain, SCP RAM-drain, and RAMsomware
attacks can be easily prevented if SCPs and users carefully
inspect their SC source code as well as the SCPs. For the SCP
CPU-drain attack, an SCP should verify if the code exists in
their SC that checks the SC’s callers in a manner that they
cannot abuse. For example, one can add a permission check at
the beginning of the SC, so that only authorized users can use
the SC. On the other hand, to prevent the SCP RAM-drain
attack, SCPs should carefully audit their SCs to determine
whether there exists code that mistakenly uses their EOS-RAM.
In the case of the RAMsomware attack, a user should give
his/her permission code only to the fully trusted SCPs.

These simple preventions seem to be textbook examples,
and none of them requires any change to the underlying
EOS.IO architecture. To render the system more secure, how-
ever, we do believe that the system must do its best effort to
address threats from every entity in the system. For instance,
in case of the SCP CPU-drain attack, the EOS.IO system
can improve its security by adding extra security components

to it. This approach is not uncommon as one of the largest
systems, a Linux kernel, adopted a similar concept to allevi-
ate the threats derived from mistakenly omitted permission
checks [29]. In the following subsections, we discuss poten-
tial changes to the EOS.IO system to fundamentally eliminate
the root causes of the attacks presented above.

5.2 Shifting the payment responsibility

As described in §4.2.1, in the SCP CPU-drain attack, a ma-
licious user intentionally triggers a target SC to deplete the
EOS-CPU of its SCP. Of course, an SCP can prevent this by
carefully inspecting the code of their SC. However, this attack
stems from the current design that encourages SCPs to pay for
the execution of their SCs originating from user transactions.

In the current EOS.IO system, to impose the transaction
cost on a specific user, an SCP has to specify the user as au-
thorized in the SC, and this process requires the eosio.code
permission from the user. In general, users are not normally
willing to grant this permission code since anyone with the
code is able to control the user account. To avoid this, an
SCP is supposed to create an SC with his/her own permission
code that imposes the transaction cost of executing the SC
onto the SCP himself/herself so that any user can be pleasant
for the execution of the SC without providing the permission
or paying the cost. Therefore, our design change suggestion
removes the constraints of SCPs, thus enabling them to avoid
using their own resources, which also eliminates the target of
the attacker.

One way to address the SCP CPU-drain attack could be
to redesign the EOS.IO system so that a user who initiates
a transaction should pay the transaction cost without having
to provide the eosio.code permission. It is quite intuitive
to impose a transaction cost on the user who actually wants
to run the SC. This fundamentally eliminates the liability of
checking the permission of the SC, as well as the benefit of
the attack—thus, the adversary would no longer be motivated
to commit it.

On the other hand, this mitigation increases the possibility
of opposite cases in which a malicious SC could deplete the
resources of a user because it does not need the permission
code of the user. Even when the user chooses to run a mali-
cious SC, the system should be responsible for alleviating the
severity of the threat. However, as the current EOS.IO system
supports limiting the maximum resource use for running an
SC, this can be mitigated as well [39].

5.3 Fine-grained permission control

The root cause of the RAMsomware attack is a user giving
his/her permission code (eosio.code) to an SCP in the belief
that the SCP will not abuse this permission. This, in fact, can
be considered the fault of the user as s/he gives permission

with full awareness of the significance of their action. Never-
theless, the EOS.IO design can be changed to protect users
from these kinds of threats.

Currently, the EOS.IO permission system pursues an all-
or-nothing approach. That is, a user can make only one kind
of action regarding his/her permission—either give or revoke
it. This fundamentally facilitates threats on assets in EOS.IO,
including the RAMsomware attack. The EOS.IO developers
are also aware of this issue and have proposed pinning the
permission into a specific version of the target SC. However,
this still remains an unresolved issue [3]. Nevertheless, we
have proven the feasibility of this threat, as shown in §4.3,
and here we suggest possible mitigation that can eradicate
such threats.

We propose a fine-grained permission control, including
the permission pinning described above. It enables a user to
set a specific period or a specific version that the permission
depends on. As a result, in case of the RAMsomware attack,
even though a malicious SCP replaces a benign SC with a
fraudulent one, the given permission would automatically lose
its validity. Moreover, the expiration date of the permission
can reduce the feasibility of the threats occurring because a
user might forget to revoke permission. Therefore, the fine-
grained permission control can help to mitigate several threats
to the EOS.IO assets.

6 Related work

6.1 Security analysis of blockchain systems
Many previous studies have investigated the security of
blockchain systems [6, 10, 27, 30, 32, 38, 43]. Most of them
focused on analyzing the two blockchain systems; Bitcoin
and Ethereum. There is a large body of work on Bitcoin
attacks. Researchers have analyzed double spending [19],
network-related attacks [2,14], illicit transactions [26], trans-
action malleability [1,9], and selfish mining [12,13,22,36,44].
Eyal et al. [13] introduced a selfish mining problem in which
rational Bitcoin miners collude to control the entire Bitcoin
system, including taking over the mining profit. Heilman et
al. [14] demonstrated the eclipse attack on the Bitcoin net-
work where an adversary can fabricate Bitcoin mining power
by spoofing the routing tables of other miners. They utilized
this to conduct double spending attacks as well. Kwon et
al. [22] proposed the fork-after-withholding attack, in which
selfish miners secretly keep new blocks as long as possible to
maximize their profit.

Previous research has also investigated the security of
Ethereum smart contracts [18, 21, 28, 40–42]. Luu et al. [28]
introduced an automatic bug finding tool for Ethereum SCs.
They aimed to discover bugs that allow colluding miners to in-
tentionally reorder the execution of SCs or to change the times-
tamp of SCs. They also presented the notorious re-entrancy
bug, which allows an adversary to continuously execute a

target SC for various purposes. Krupp et al. [21] developed
a tool that automatically generates exploits for identified SC
vulnerabilities, and Kalra et al. [18] presented another tool
that automatically remediates a target SC by inserting security
checks.

Recently, researchers have started analyzing the security of
other blockchain systems, such as Ripple [34], Monero [15,
31], and Stellar [20]. In addition, there have been studies on
evaluating various consensus algorithms [45], and analyzing
the decentrality in permissionless blockchains [23].

In line with this research, we analyzed the EOS.IO sys-
tem an identified new security concerns that are rooted in
the unique characteristics of EOS.IO and also described their
attack scenarios. We are planning to develop an analysis plat-
form for EOS.IO SCs, following the previous papers [21, 28].

6.2 Security analysis of EOS.IO
Even though there exist many studies on Bitcoin and
Ethereum, there have been only a few studies conducted on
EOS.IO. We only found several bugs [4, 17, 25, 33, 35] re-
ported from the industry. These bugs can be categorized as
software bugs in the core EOS.IO system [33], logical bugs
in EOS.IO SCs [4, 17, 25], and a design bug [33].

Chen et al. [33] found an arbitrary code execution bug in
EOS.IO. This bug is essentially caused by an integer overflow
bug when executing an SC that leads to out-of-bound buffer
access. There are bugs from mis-implementation of SCs as
well [4, 17, 25]. One example is that an adversary can exploit
an SC that does not properly check the caller of the SC, allow-
ing multiple EOS.IO SCs to be executed subordinately [25].
The third category is a bug that stems from the EOS.IO core
design, allowing a large number of transactions to delay the
block creation time [35]. This appears to be similar to our
block delay attack; however, they essentially differ in that
the block delay attack pauses BPs by exploiting their transac-
tion scheduling algorithm. Hence, it can effectively break the
system down.

In this paper, we documented four new threats and attacks.
Even though some of them seem trivial, their underlying
causes are related to the EOS.IO system design. We also
addressed specific design concerns with the current EOS.IO
system and noted how fixing them would address potential
threats to EOS.IO.

7 Conclusion

Building a secure system demands an understanding of poten-
tial threats and their underlying root causes. We conducted
the first study that analyzes the security of the EOS.IO sys-
tem, which has recently become one of the most popular
blockchain systems. We presented three novel attack methods
along with one concrete attack scenario, abusing the contro-
versial EOS.IO design policy. All the attacks exploit new

system components, including EOS-CPU, EOS-RAM, and BP
scheduling, which are unique to EOS.IO. We also conducted
the experiments for each attack, thereby demonstrating their
severities. Finally, we proposed the possible mitigations of
the presented threats.

In this paper, we manually checked several smart contracts
whether they are vulnerable to the presented attacks. However,
we believe there still exist other vulnerable SCs that have yet
to be discovered. We leave finding vulnerable EOS.IO SCs
on a larger scale as a promising future work.

Acknowledgments

The authors would like to thank the anonymous reviewers for
their concrete feedback. This work was supported by Institute
for Information & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No.
2018-0-00254).

References

[1] Marcin Andrychowicz, Stefan Dziembowski, Daniel
Malinowski, and Łukasz Mazurek. On the malleability
of bitcoin transactions. In International Conference on
Financial Cryptography and Data Security, pages 1–18.
Springer, 2015.

[2] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever.
Hijacking bitcoin: Routing attacks on cryptocurrencies.
In 2017 IEEE Symposium on Security and Privacy (SP
2017), pages 375–392. IEEE, 2017.

[3] arhag. eosio.code permission argument. https://
github.com/EOSIO/eos/issues/3050, 2018.

[4] Adrian Barkley. 1 billion fake eos tokens
used to steal $58k from decentralised exchange.
https://cryptodaily.co.uk/2018/09/1-billion-
fake-eos-tokens-used-to-steal-58k-from-
decentralised-exchange, 2018.

[5] Jf Bastien and Dan Gohman. WebAssembly:
Here Be Dragons. https://llvm.org/devmtg/
2015-10/slides/BastienGohman-WebAssembly-
HereBeDragons.pdf, 2015.

[6] Ethereum classic community. Ethereum Classic Docu-
mentation. Self-published, 2016.

[7] Top 100 cryptocurrencies by market capitalization.
https://coinmarketcap.com/, 2019.

[8] EOS Dapps Rankings. https://dappradar.com/
rankings/protocol/eos, 2019.

[9] Christian Decker and Roger Wattenhofer. Bitcoin trans-
action malleability and mtgox. In European Sympo-
sium on Research in Computer Security, pages 313–326.
Springer, 2014.

[10] EOS.IO Technical White Paper. https:
//github.com/EOSIO/Documentation/blob/
master/TechnicalWhitePaper.md, 2018.

[11] EOS Park - EOS data service provider. https://
eospark.com/.

[12] Ittay Eyal. The Miner’s Dilemma. In 2015 IEEE Sym-
posium on Security and Privacy (SP 2015). IEEE, 2015.

[13] Ittay Eyal and Emin Gün Sirer. Majority is not enough:
Bitcoin mining is vulnerable. Communications of the
ACM, 61(7):95–102, 2018.

[14] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon
Goldberg. Eclipse attacks on bitcoin’s peer-to-peer net-
work. In 24th USENIX Security Symposium (USENIX
Security 15), pages 129–144, 2015.

[15] Abraham Hinteregger and Bernhard Haslhofer. An em-
pirical analysis of monero cross-chain traceability. arXiv
preprint arXiv:1812.02808, 2018.

[16] Michael Howard and Steve Lipner. The security devel-
opment lifecycle, volume 8. Microsoft Press Redmond,
2006.

[17] Kai Jing. EOS smart contract development security
best practices. https://github.com/slowmist/eos-
smart-contract-security-best-practices/
blob/master/README_EN.md, 2018.

[18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh
Sharma. Zeus: Analyzing safety of smart contracts. In
25th Annual Network and Distributed System Security
Symposium, NDSS, pages 18–21, 2018.

[19] Ghassan O Karame, Elli Androulaki, and Srdjan Cap-
kun. Double-spending fast payments in bitcoin. In
Proceedings of the 2012 ACM conference on Computer
and communications security, pages 906–917. ACM,
2012.

[20] Minjeong Kim, Yujin Kwon, and Yongdae Kim. Is
Stellar As Secure As You Think? IEEE Security and
Privacy on the Blockchain (IEEE S&B 2019), 2019.

[21] Johannes Krupp and Christian Rossow. teether: Gnaw-
ing at ethereum to automatically exploit smart contracts.
In 27th USENIX Security Symposium (USENIX Security
18), pages 1317–1333, 2018.

https://github.com/EOSIO/eos/issues/3050
https://github.com/EOSIO/eos/issues/3050
https://cryptodaily.co.uk/2018/09/1-billion-fake-eos-tokens-used-to-steal-58k-from-decentralised-exchange
https://cryptodaily.co.uk/2018/09/1-billion-fake-eos-tokens-used-to-steal-58k-from-decentralised-exchange
https://cryptodaily.co.uk/2018/09/1-billion-fake-eos-tokens-used-to-steal-58k-from-decentralised-exchange
https://llvm.org/devmtg/2015-10/slides/BastienGohman-WebAssembly-HereBeDragons.pdf
https://llvm.org/devmtg/2015-10/slides/BastienGohman-WebAssembly-HereBeDragons.pdf
https://llvm.org/devmtg/2015-10/slides/BastienGohman-WebAssembly-HereBeDragons.pdf
https://coinmarketcap.com/
https://dappradar.com/rankings/protocol/eos
https://dappradar.com/rankings/protocol/eos
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://eospark.com/
https://eospark.com/
https://github.com/slowmist/eos-smart-contract-security-best-practices/blob/master/README_EN.md
https://github.com/slowmist/eos-smart-contract-security-best-practices/blob/master/README_EN.md
https://github.com/slowmist/eos-smart-contract-security-best-practices/blob/master/README_EN.md

[22] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Vasser-
man, and Yongdae Kim. Be Selfish and Avoid Dilem-
mas: Fork After Withholding (FAW) Attacks on Bitcoin.
In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017.

[23] Yujin Kwon, Jian Liu, Minjeong Kim, Dawn Song,
and Yongdae Kim. Impossibility of full decentraliza-
tion in permissionless blockchains. arXiv preprint
arXiv:1905.05158, 2019.

[24] Daniel Larimer. Delegated proof-of-stake (dpos). Bit-
share whitepaper, 2014.

[25] Quoc Le. How hackers attack eos contracts
and ways to prevent it. https://medium.com/
leclevietnam/hacking-in-eos-contracts-and-
how-to-prevent-it-b8663c8bffa6, 2018.

[26] Seunghyeon Lee, Changhoon Yoon, Heedo Kang,
Yeonkeun Kim, Yongdae Kim, Dongsu Han, Sooel Son,
and Seungwon Shin. Cybercriminal minds: An inves-
tigative study of cryptocurrency abuses in the dark web.
In 26th Annual Network and Distributed System Security
Symposium, NDSS, 2019.

[27] Litecoin. https://litecoin.org/, 2018.

[28] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena,
and Aquinas Hobor. Making smart contracts smarter. In
Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 254–269.
ACM, 2016.

[29] Stuart McClure, Joel Scambray, George Kurtz, and
Kurtz. Hacking exposed: network security secrets and
solutions. McGraw-Hill, 2009.

[30] Monero. https://monero.org/, 2018.

[31] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee,
Henry Heffan, Shashvat Srivastava, Kyle Hogan, Jason
Hennessey, Andrew Miller, Arvind Narayanan, et al.
An empirical analysis of traceability in the monero
blockchain. Proceedings on Privacy Enhancing Tech-
nologies, 2018(3):143–163, 2018.

[32] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system, 2008.

[33] Yuki Chen of Qihoo 360. Eos arbitarary code execution.
http://blogs.360.cn/post/eos-node-remote-
code-execution-vulnerability.html, 2018.

[34] Ufuoma Ogono. Vulnerabilities in bitcoin, rip-
ple, and ethereum digital signatures discovered

by researchers. https://smartereum.com/
46548/cryptocurrency-digital-signatures-
vulnerabilities-in-bitcoin-ripple-and-
ethereum-digital-signatures-discovered-
by-researchers-cryptocurrency-news-today/,
2019.

[35] PeckShield. Eos “transaction congestion attack”:
Attackers could paralyze eos network with minimal
cost. https://medium.com/@peckshield/eos-
transaction-congestion-attack-attackers-
could-paralyze-eos-network-with-minimal-
cost-9adfb4d16c82, 2019.

[36] Ruben Recabarren and Bogdan Carbunar. Hardening
stratum, the bitcoin pool mining protocol. Proceed-
ings on Privacy Enhancing Technologies, 2017(3):57–
74, 2017.

[37] BITMEX research. The bitcoin cash hard-
fork – three interrelated incidents, 2019.
https://blog.bitmex.com/the-bitcoin-cash-
hardfork-three-interrelated-incidents/.

[38] David Schwartz, Noah Youngs, Arthur Britto, et al. The
ripple protocol consensus algorithm. Ripple Labs Inc
White Paper, 5, 2014.

[39] Set account permission. https:
//developers.eos.io/eosio-cleos/
reference#cleos-set-account, 2019.

[40] Matt Suiche. Porosity: A decompiler for blockchain-
based smart contracts bytecode. DEF CON, 25:11, 2017.

[41] ConsenSys Team. Mythril: Security analysis tool
for ethereum smart contracts. https://github.com/
ConsenSys/mythril, 2018.

[42] Trailofbits. Manticore. https://github.com/
trailofbits/manticore, 2017.

[43] Gavin Wood. Ethereum: A Secure Decentralized Gen-
eralized Transaction Ledger. Ethereum Project Yellow
Paper, 151, 2014.

[44] Ren Zhang and Bart Preneel. Publish or perish: A
backward-compatible defense against selfish mining in
bitcoin. In Cryptographers’ Track at the RSA Confer-
ence, pages 277–292. Springer, 2017.

[45] Ren Zhang and Bart Preneel. Lay down the common
metrics: Evaluating proof-of-work consensus protocols’
security. In 2019 IEEE Symposium on Security and

Privacy (SP 2019), 2019.

https://medium.com/leclevietnam/hacking-in-eos-contracts-and-how-to-prevent-it-b8663c8bffa6
https://medium.com/leclevietnam/hacking-in-eos-contracts-and-how-to-prevent-it-b8663c8bffa6
https://medium.com/leclevietnam/hacking-in-eos-contracts-and-how-to-prevent-it-b8663c8bffa6
https://litecoin.org/
https://monero.org/
http://blogs.360.cn/post/eos-node-remote-code-execution-vulnerability.html
http://blogs.360.cn/post/eos-node-remote-code-execution-vulnerability.html
https://smartereum.com/46548/cryptocurrency-digital-signatures-vulnerabilities-in-bitcoin-ripple-and-ethereum-digital-signatures-discovered-by-researchers-cryptocurrency-news-today/
https://smartereum.com/46548/cryptocurrency-digital-signatures-vulnerabilities-in-bitcoin-ripple-and-ethereum-digital-signatures-discovered-by-researchers-cryptocurrency-news-today/
https://smartereum.com/46548/cryptocurrency-digital-signatures-vulnerabilities-in-bitcoin-ripple-and-ethereum-digital-signatures-discovered-by-researchers-cryptocurrency-news-today/
https://smartereum.com/46548/cryptocurrency-digital-signatures-vulnerabilities-in-bitcoin-ripple-and-ethereum-digital-signatures-discovered-by-researchers-cryptocurrency-news-today/
https://smartereum.com/46548/cryptocurrency-digital-signatures-vulnerabilities-in-bitcoin-ripple-and-ethereum-digital-signatures-discovered-by-researchers-cryptocurrency-news-today/
https://medium.com/@peckshield/eos-transaction-congestion-attack-attackers-could-paralyze-eos-network-with-minimal-cost-9adfb4d16c82
https://medium.com/@peckshield/eos-transaction-congestion-attack-attackers-could-paralyze-eos-network-with-minimal-cost-9adfb4d16c82
https://medium.com/@peckshield/eos-transaction-congestion-attack-attackers-could-paralyze-eos-network-with-minimal-cost-9adfb4d16c82
https://medium.com/@peckshield/eos-transaction-congestion-attack-attackers-could-paralyze-eos-network-with-minimal-cost-9adfb4d16c82
https://blog.bitmex.com/the-bitcoin-cash-hardfork-three-interrelated-incidents/
https://blog.bitmex.com/the-bitcoin-cash-hardfork-three-interrelated-incidents/
https://developers.eos.io/eosio-cleos/reference#cleos-set-account
https://developers.eos.io/eosio-cleos/reference#cleos-set-account
https://developers.eos.io/eosio-cleos/reference#cleos-set-account
https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore

	Introduction
	Background
	EOS.IO overview
	EOS.IO smart contract
	Resources of EOS.IO
	EOS resource payment

	Attack Model
	Attacks
	Block delay attack
	DoS by draining EOS resources
	SCP CPU-drain attack
	SCP RAM-drain attack

	RAMsomware attack

	Mitigation
	Preventative measures against attacks
	Shifting the payment responsibility
	Fine-grained permission control

	Related work
	Security analysis of blockchain systems
	Security analysis of EOS.IO

	Conclusion

