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Abstract

The prevailing presence of DOM-based cross-site scripting (XSS)
vulnerabilities on the Web poses a critical security threat to Internet
surfers. Previous research has demonstrated the effectiveness of
dynamic detection and monitoring methods for XSS attacks, demon-
strating their promising potential in mitigating security threats.
However, this research direction suffers from a deployment issue,
necessitating browser changes and significant refactoring to web
applications, which hinders their practical deployment.

To address these deployment challenges, we propose TrustyMon.
The key idea is to leverage a new browser-integrated framework
known as Trusted Types. We design TrustyMon to automatically
collect benign signatures representing JavaScript (JS) snippets that
implement website functionality. TrustyMon-protected webpages
then match every JS code injected via XSS sinks among the benign
JS signatures in runtime by leveraging Trusted Types in browsers.
We demonstrate the efficacy of TrustyMon in accurately identifying
DOM-based XSS attacks across 16 real-world web applications with-
out false negatives. By leveraging Trusted Types, we improve the
practical deployment of dynamic monitoring in client-side browsers
without requiring any changes to browsers. TrustyMon introduces
a negligible latency of 27.02 ms in page loading time during its
deployment, exemplifying a practical and readily deployable moni-
toring framework for detecting DOM-based XSS attacks.
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1 Introduction

Cross-site scripting (XSS) is a pervasive and critical security threat
on the Web. XSS has consistently ranked in the OWASP Top 10
threats [20, 42], and Invicti reported that approximately 25% of
websites have XSS vulnerabilities [23]. In particular, DOM-based
XSS vulnerabilities have become increasingly prevalent as web
development trends shift toward single-page applications that dy-
namically update web content using JavaScript (JS) in response
to user interactions [18, 60]. Previous studies also demonstrated
that approximately 10% of the Alexa Top 10,000 websites were
vulnerable to DOM-based XSS attacks [29, 54].

Previous research has focused on preventing DOM-based XSS
vulnerabilities by using secure APIs and sanitizers [21, 41, 62] or
by identifying vulnerabilities using static, dynamic, and hybrid
analyses as well as machine learning [5, 29, 35, 36, 46, 57]. Despite
these efforts, the number of reported XSS vulnerabilities has con-
tinued to increase from 470 in 2011 to 22,000 by April 2022 [15].
Addressing these identified vulnerabilities remains challenging.
Stock et al. found that only 10.5% of DOM-based XSS vulnerabilities
were patched within a month after vulnerability notifications were
sent, leaving the majority of vulnerabilities unpatched [56].

Unfortunately, even after security patches are released, many
vulnerabilities remain exploitable until site operators apply these
patches. Approximately 52% of websites continue to operate with
known security vulnerabilities [58]. Accordingly, merely identifying
and patching vulnerabilities still leaves website users unprotected.
It is therefore imperative to safeguard users against DOM-based
XSS attacks that exploit unknown or unpatched vulnerabilities.

Dynamic detection and monitoring systems enable the real-time
detection of XSS attacks. By observing unusual or malicious be-
haviors, one can take preventive actions when an attack occurs.
For example, intrusion detection systems (IDS) monitor network
traffic to detect unauthorized access or malicious activity [30]. In
a similar vein, DOM-based XSS attacks can be dynamically moni-
tored, which complements traditional vulnerability identification
methods by detecting ongoing attacks that exploit unknown or
unpatched vulnerabilities, thus serving as a second line of defense.

Several approaches for dynamically monitoring DOM-based
XSS attacks have been proposed, including allowlist-based filter-
ing [17, 24, 39, 59], taint analysis [55], and randomization tech-
niques [4]. However, it is challenging to deploy these approaches
on real-world environments from a practical perspective; they often
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require significant modifications to server-side web applications,
changes to browser implementations [4, 24, 39, 55], or introduce
non-negligible execution overhead [59]. Accordingly, these chal-
lenges hinder their widespread adoption in practice.

We posit that designing a practical and widely deployable moni-
toring system for DOM-based XSS attacks should address the fol-
lowing requirements: (1) it should not require changes to browser
implementations or server-side web applications; (2) it should not
necessitate constant maintenance or updates as client-side browsers
evolve; and (3) it should impose negligible performance overhead.

In this paper, we present TrustyMon, a dynamic monitor-
ing framework for DOM-based XSS attacks. Unlike previous ap-
proaches [4, 17, 55, 59], TrustyMon addresses the aforementioned re-
quirements by using Trusted Types [26]. Trusted Types is a browser-
supported framework designed to help web developers mitigate
DOM-based XSS by ensuring that sensitive injection sinks only
accept trusted data. By leveraging the Trusted Types functionality,
TrustyMon dynamically monitors the arguments passed to injection
sinks that are able to introduce ]S snippets and confirms whether
the injected scripts are safe, thus monitoring real-time XSS attacks.

TrustyMon operates in two phases: extraction and monitoring.
In the extraction phase, TrustyMon automatically collects a set
of signatures for benign JS snippets or URLs that are passed to
injection sinks by crawling a given website. In the monitoring
phase, TrustyMon dynamically monitors injection sinks that can
potentially cause DOM-based XSS attacks and checks whether the
supplied arguments are intended values by matching their sig-
natures against the previously collected benign signatures. For
this, TrustyMon leverages Trusted Types, supported by Chromium-
based browsers. Any violation triggered by Trusted Types indicates
a potential DOM-based XSS attack, where injected ]S snippets do
not match the benign signatures. These violations are then reported
to TrustyMon’s server-side framework for further actions.

We note that adopting Trusted Types is known to require arduous
engineering effort [25, 62, 63]. In contrast, we designed TrustyMon
to be trivially deployable, minimizing the burden on website opera-
tors. TrustyMon does not require any modifications to browsers,
and website operators are able to deploy TrustyMon by simply
inserting a content security policy (CSP) header and loading the
necessary JS libraries. This enables TrustyMon to monitor all sensi-
tive injection sinks that Trusted Types cover without introducing
side effects or compatibility issues. Moreover, TrustyMon benefits
from Chromium’s ongoing support for Trusted Types and its up-
dates as web standards (e.g., ECMAScript and HTML5) evolve [6, 7],
facilitating the maintenance of TrustyMon.

Previous studies [17, 39, 50, 59] have demonstrated the effec-
tiveness of allowlist-based filtering approaches. These approaches
assume that a complete list of benign signatures is available and that
the collected signatures remain static over time. However, these as-
sumptions often do not hold in practice. To address this, TrustyMon
provides Report Controller that enables site operators to easily reg-
ister new benign JS signatures based on violation reports, thereby
minimizing the allowlist maintenance burden on site operators.

We evaluated the efficacy of TrustyMon on 16 web applications,
each containing at least one DOM-based XSS vulnerability. The
experimental results show that TrustyMon successfully detected all
attempted attacks without false negatives. It also imposes negligible
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<script>
var name = decodeURIComponent (
document.location.hash.substr(1));
document.write(name);
</script>
// Payload: http://example.com/welcome.html#<script>
alert(document.cookie)</script>

QU W N

Listing 1: Example of a DOM-based XSS Vulnerability.

overhead, with an average increase of 27.02 ms (5.68%) in page
loading time across the benchmark applications. Furthermore, when
comparing TrustyMon to existing DOM-based XSS detection work,
TrustyMon attained better performance in detecting XSS attacks
and lower page loading latency without necessitating changes to
internal browser logic or server-side web applications.

In summary, we propose a practical approach to monitoring
DOM-based XSS attacks using Trusted Types. We demonstrate that
TrustyMon is effective for monitoring DOM-based XSS attacks
with negligible overhead and easily deployable without requiring
changes to server-side web applications and client browsers.

2 Background
2.1 DOM-based XSS

Cross-site scripting (XSS) is one of the most prevalent and critical
web threats, consistently ranking first among reported vulnerability
types [19, 49]. DOM-based XSS is a specific type of XSS attack
that injects malicious JS code into a target webpage. It exploits
JS injection sinks, such as document.write, innerHtml, and eval,
causing these injection sinks to add malicious JS code from attacker-
controlled input vectors, including document . URL, location.hash,
window. location, and postMessage.data.

Listing 1 shows a JS example that has a DOM-based XSS vulnera-
bility. Assuming that users are expected to access this webpage with
the URL http://example.com/welcome html#Alice, this webpage is
supposed to print out “Alice”. However, an attacker can exploit this
by composing a URL like http://example.com/welcome.html#<sc
ript>alert(document.cookie)</script>, which injects the JS code
in the URL fragment section into the document.write() function.
This results in the JS code being injected into the web document,
exploiting the DOM-based XSS vulnerability.

DOM-based XSS has become prevalent as web applications offer
dynamic and interactive user experiences using JS. The highly
dynamic and API-dependent nature of JS often leads to intricate
control and data flows, making the identification of DOM-based
XSS vulnerabilities challenging.

2.2 Trusted Types

Trusted Types is a built-in browser framework designed to mitigate
DOM-based XSS vulnerabilities [26, 62]. Its objective is to provide a
set of Trusted Types for HTML, URL, and JS, ensuring that browsers
accept only trusted values at security-critical injection sinks, which
may cause DOM-based XSS vulnerabilities.

The Trusted Types standard [26] defines a set of sensitive DOM
XSS injection sinks that dynamically modify the DOM structure
and insert JS snippets based on user input strings. We refer to these
DOM XSS injection sinks as injection sinks in this paper. At runtime,
browsers enforce Trusted Types by ensuring that these injection
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<html><head>

<meta http-equiv="Content-Security-Policy"

content="require-trusted-types-for 'script';
trusted-types default">

<script>

trustedTypes.createPolicy('default', {
createHTML: (string) =>
string.replace(/\</g, '&lt;')});

0NN A W N R

9 </script>
10 | </head>
11 | <body><script>

12 var name = decodeURIComponent (
13 document.location.hash.substr(1));
14 document.write(name);

15 | </script></body></html>

Listing 2: JS example using Trusted Types.

sinks accept only trusted values as their arguments, preventing
untrusted strings from being executed.

Specifically, Trusted Types introduces three internal types:
TrustedHTML, TrustedScript, and TrustedScriptURL. Trusted
Type objects can only be created through user-defined policies
(TrustedTypePolicy). These policies define a set of functions
(createHTML, createScript, and createScriptURL) that convert
strings into Trusted Type objects after applying sanitization or val-
idation logic. Listings 7 and 8 show how Trusted Type policies are
defined and how a string is converted into a Trusted Type object.

One of the policies, a default policy is special, which is implicitly
invoked whenever an injection sink receives a string instead of a
Trusted Type object. In other words, the functions in the default
policy (i.e., createXX) act as callback functions for each Trusted
Type. For instance, when innerHTML, which inserts HTML strings
into the DOM, receives a string, the default policy’s createHTML
function is automatically invoked. Therefore, we refer to the set
of functions in the default policy (i.e., createHTML, createScript,
and createScriptURL) as Trusted Type callbacks in this paper.

Listing 2 shows a JS example using Trusted Types. Lines (Lns) 2-
4 instruct the browser to enable Trusted Types and ensure that
all DOM-based XSS injection sinks use Trusted Type values. The
require-trusted-types-for directive enforces Trusted Types
at all injection sinks. The trusted-types directive instructs the
browser to apply the specified policies. Trusted Type policies define
functions that sanitize input arguments and return a Trusted Type
object. Lns 6-8 define the default policy, which includes a create-
HTML function that converts all left angle brackets (i.e., <) into &1t;,
thus preventing the injection of HTML tags. When the default
policy is used, all injection sinks invoke the callback functions
corresponding to their type. At Ln 14, document.write method
invokes the createHTML function before executing any provided
content. Finally, the injection sink of document.write is executed
only if the given argument is of type TrustedHTML. Otherwise, it
throws an error, rejecting any untrusted argument types.

As shown in the provided examples, each Trusted Type pol-
icy requires web developers to implement sanitization logic that
transforms a given argument string into its sanitized version. Con-
sequently, web developers are tasked with defining proper policies,
considering the injection sinks and the contexts in which user in-
puts appear within a webpage. Accordingly, such tasks become
challenging for large applications, demanding significant engineer-
ing effort in refactoring legacy web applications [25, 62, 63].
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Chrome has supported Trusted Types since Chrome 83 [2].
Trusted Types is enabled when a CSP header includes the require-
trusted-types-for and the trusted-types directives [32, 33],
which outlines the Trusted Type policies that browsers enforce
at runtime. 130 Google services, including Photos, Contacts, and
My Activity, have deployed Trusted Types [25]. Moreover, Trusted
Types is supported in popular libraries, such as Angular, React,
Karma, and Webpack. The percentage of Chrome page views using
Trusted Types increased from 1.8% in 2021 to 14.2% in 2024 [65].

3 Motivation

Modern web applications have become increasingly complex, ren-
dering significant challenges in identifying web vulnerabilities
before their deployments. Specifically, detecting unknown XSS
vulnerabilities [5, 29, 35, 36, 44] remains a difficult task; XSS at-
tacks have consistently ranked among the OWASP Top 10 security
threats [20, 42]. Accordingly, the runtime detection of XSS attacks
serves as a critical second line of defense, effectively mitigating the
security risks that XSS vulnerabilities pose.

Previous studies have proposed various methods for dynami-
cally monitoring and detecting DOM-based XSS attacks, including
allowlist-based filtering [17, 24, 39, 59], taint analysis [55], and in-
struction set randomization [4]. While these methods have shown
potential in detecting XSS attacks, they face significant deployment
challenges. They often require modifications to server-side appli-
cations or user browsers [4, 24, 39, 55] and introduce considerable
overhead [39, 55, 59]. Therefore, there is a clear need for a dynamic
monitoring framework that is both practical and widely deployable.

3.1 Technical Challenges

Implementing a practical and widely deployable monitoring frame-
work for DOM-based XSS detection involves addressing the follow-
ing key technical challenges.

No changes to browsers. For large-scale deployment, the monitor-
ing tool should be compatible with a wide range of users’ browsers.
Each browser is a potential target of DOM-based XSS attacks. How-
ever, it also simultaneously presents an opportunity for the monitor-
ing tool to detect these attacks. Therefore, a client-side monitoring
tool should require no changes to user browsers and leverage built-
in browser features for widespread deployment, thus improving
detection coverage for ongoing client-side XSS attacks.

Minimal changes to websites. Minimizing changes to server-side
web applications and environments is essential for facilitating the
deployment of a monitoring framework. Additionally, the frame-
work should support easy maintenance as websites evolve over
time. By ensuring seamless deployment and effortless maintenance,
website operators are more likely to adopt the framework, thereby
improving their overall security against DOM-based XSS attacks.
Negligible overhead. This additional framework should introduce
negligible overhead on website users, particularly regarding web-
page loading times. It is well known that visitors tend to leave a
website when it takes a long time to load; according to Google Con-
sumer Insights, 53% of website visitors leave a webpage if it takes
longer than three seconds to load [67], and the bounce probability
increases by 32% when page load time extends from one to three
seconds [3]. Hence, a lightweight monitoring framework is crucial.



ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

I ion Phase T Monitoring Phase ————

@ Req

= @\Rey Browser Browser % =
ink( Js i
© Add sink( ) ® Load sink( 3S ) © Add
l/ @ Gen \l/ i,@ Gen
Signature Signature  Signature
i Extraction Lib L L \© Match & Monitoring Lib :
V ® Send UNMATCH
@ Report =—=]
= L @Report; . 1=3
= =]
Signature DB Report DB

Figure 1: Overview of TrustyMon architecture.

Existing techniques, such as taint analysis and randomization,

struggle to address these challenges. Taint analysis typically de-
mands browser or website instrumentation and incurs significant
overhead [55], making it unsuitable for seamless integration. Ran-
domization techniques also face similar drawbacks regarding their
deployability [4].
Our methodology. We propose TrustyMon that leverages the
Trusted Types feature to address these technical challenges. By
using Trusted Types, we implement an allowlist-based filtering
mechanism. Since Trusted Types is a built-in browser functionality,
it requires no modifications to user browsers. Moreover, to enable
Trusted Types and the monitoring of XSS attacks, TrustyMon re-
quires website operators to include a simple CSP policy and a JS
library, resulting in minimal changes to websites under protection.
Lastly, TrustyMon leverages the browser’s built-in capability to
monitor the arguments of sensitive sink functions that introduce
malicious JS snippets, reducing overhead compared to previous ap-
proaches [41] that rely on customized frameworks for monitoring
sensitive sinks. We also emphasize that TrustyMon supports the
seamless maintenance of benign signatures (i.e., allowlists) through
Report Controller, which supports the collection of new benign sig-
natures dynamically, providing a practical monitoring framework
for real-time DOM-based XSS detection.

4 Design

4.1 Overview

Figure 1 illustrates the overview of TrustyMon, which operates in
two phases: extraction and monitoring.

In the extraction phase, TrustyMon extracts a set of JS signatures
from a website under protection. Each signature corresponds to a
benign JS snippet or URL that implements the website’s functional-
ity. To initiate this process, website operators embed a CSP header
and include the TrustyMon extraction library in the target website
(). TrustyMon then crawls the website using a Chrome browser,
executing existing JS snippets in the crawled webpages (2-®).
Trusted Types in the crawling browser invokes the Trusted Type
callbacks defined in the extraction library. These callbacks extract
the JS snippets or URLs, which are dynamically injected via injec-
tion sinks, and convert them into signatures (). These signatures
are then reported to the TrustyMon signature database ().

In the monitoring phase, website operators include the Trusty-
Mon monitoring library and a CSP header in their websites to
enable Trusted Types functionality (). When a client browser
requests this monitoring library, TrustyMon retrieves the set of
benign JS signatures from the database and generates a JS file listing
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Content-Security-Policy-Report-0Only: require-trusted-
types-for 'script';

Listing 3: CSP for Trusted Types used in TrustyMon.

the benign signatures (®). During this phase, the Trusted Type
callbacks defined in the monitoring library inspect each dynami-
cally inserted JS snippet prior to execution () and match its JS
signature against the benign signatures (). TrustyMon detects
any attempts to inject JS snippets that do not have a matching
signature in the collected set of benign signatures. It reports these
detected attempts to a designated reporting endpoint, notifying
website operators of any JS injection attempts ((7).

Advantages. TrustyMon leverages CSP and Trusted Types which
are supported by Chromium-based browsers such as Chrome, Edge,
Opera, Samsung Internet, and UC Browser. This requires no modi-
fications to client browsers, thereby addressing the first challenge
(§3.1). Given that these browsers make up 76.78% of the browser
market [52], we believe that TrustyMon provides substantial cover-
age for detecting DOM-based XSS attacks targeting general users.
As more browsers adopt Trusted Types, the coverage of Trusty-
Mon will expand; for instance, Mozilla has announced plans to
implement Trusted Types in Firefox [8].

Moreover, since TrustyMon harnesses built-in browser features,
it does not introduce additional overhead during webpage rendering.
We demonstrate that TrustyMon incurs an average latency of 27.02
ms, imposing negligible overhead on webpage loading times (§5.4.1),
which overcomes the third challenge.

Lastly, TrustyMon automatically extracts benign JS signatures
from the target website and monitors dynamically inserted JS snip-
pets using JS libraries that website operators can trivially append
to their websites. This requires no changes to server-side web ap-
plication logic, thus addressing the second challenge.

4.2 Extraction Phase

The extraction phase collects signatures of benign JS snippets or
URLs that implement the functionalities of the target website. This
phase compiles a list of benign signatures representing the JS snip-
pets or URLs that website operators intend to run in client browsers.

Given a target website under protection, web operators place a
CSP header and an extraction JS library into the website. This CSP
activates the default policy of Trusted Types, and the extraction
library hooks all invocations of JS injection sinks.

Listing 3 describes the CSP that TrustyMon leverages to en-
able a browser to check the Trusted Types of argument strings
passed into injection sinks. It also allows the browser to report
Trusted Type violations to a specified endpoint. The extraction
library defines Trusted Type callbacks for all Trusted Types (i.e.,
TrustedHTML, TrustedScript, and TrustedScriptURL). In these
callbacks, TrustyMon extracts dynamically injected JS snippets and
computes their signatures.

After the initial setting, TrustyMon crawls webpages and exe-
cutes JS snippets using a Chrome browser. During this crawling
process, the browser invokes a Trusted Type callback for each injec-
tion sink invocation. The invoked callback extracts a JS signature
from the argument string of the invoked injection sink and reports
the signature to a designated endpoint. This endpoint records the
received signature, the URL where the violation occurs, and the
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Algorithm 1: Trusted Type Callback

1 Procedure TrustedTypeCallback(sink, arg)
2 if sink.type == HTML then
3 | C « ExtractScriptOrURL(arg, [1)

4 else if sink.type == Script or sink.type == ScriptURL then
5 | C«[arg]

6 signature « []

7 foreach ¢ € C do

8 if c.type == Script then

9 L signature.append (GetTypesAndValuesFromAST(c))

10 else if c.type == URL then

1 L signature.append(c.scheme + c.domain + c.path)
12 signature « Hash(signature)

13 if ExtractionPhase then

14 L SendSignature(signature)

15 else if MonitoringPhase then

16 if signature € allowlist then

17 | TrustedType(arg)

18 else

19 | SendReport(signature, sink,arg)

20 Procedure ExtractScriptOrURL (arg, C)

21 foreach e € DOMParse(arg) do

22 ¢ « ExtractExecutableContentsFromRule(e)

23 if c.type == HTML then

24 | C.append(ExtractScriptOrURL(c,C))

25 else if c.type == Script orc.type == URL then
26 | C.append(c)

27 | returnC

location of the injection sink. We describe the crawler and the
Trusted Type callbacks in more detail in the following sections.

4.2.1 Crawler. Given a website URL and test accounts, TrustyMon
systematically explores the website. When visiting each webpage,
the crawler extracts <a> tags and their href attributes to collect
URLs for further exploration. Additionally, TrustyMon simulates
user behavior by identifying <form> tags and their child elements
that accept user input, such as <input>, <textarea>, and <se-
lect>. For each user-controllable HTML element, the crawler in-
puts randomly generated strings or interacts with various options,
including checkboxes, radio buttons, and dropdown menus. It then
submits the form by clicking the submit button. This process contin-
ues until all collected URLs have been visited or a timeout occurs.
Note that deploying diverse crawlers, such as Crawljax [10] or
monkey testing [31], can help expand the extraction coverage.

4.2.2  Trusted Type Callback. During the website crawling process,
benign JS snippets are executed, allowing the crawling browser to
invoke the defined Trusted Type callbacks with the actual argument
strings used at DOM injection sinks. In these callbacks, TrustyMon
extracts a JS snippet or URL from each string argument and then
computes a signature based on this snippet.

Based on the type of an invoked injection sink, the correspond-
ing Trusted Type callback defined in the Trusted Type policy is
invoked. There are three types of injection sinks that render argu-
ments as HTML (HTML), execute arguments as scripts (Script), and
treat arguments as URLSs for external script resources (ScriptURL),
respectively. Examples of each type of injection sink supported
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Table 1: Matching rules for extracting executable contents.

Matching rules

#1. <script sre="[URL]"></script>

#2. <script>[JS]</script>

#3. <a href="javascript:[JS]"></a>

#4. <form action="javascript:[JS]"></form>

#5. <input formAction="javascript:[JS]"></input>
#6. <button formAction="javascript:[JS]"></button>
#7. <iframe srcdoc="[HTML]"></iframe>

#8. <element event="[]S]"></element>

by Trusted Types are provided in Appendix §C. For each of these
injection sink types, the corresponding Trusted Type callback (i.e.,
createHTML, createScript, or createScriptURL) is defined in
our Trusted Type policy in the TrustyMon extraction library. List-
ing 9 shows the pseudocode of TrustyMon’s Trusted Types policy.
Algorithm 1 describes the process of these defined callbacks.
Script/URL extraction. The Trusted Type callback extracts a JS
snippet or URL from the string passed to an injection sink (Lns 2-5).
When an HTML sink is invoked, the callback parses the argument
into a DOM tree (Ln 21). It then traverses the elements of this DOM
tree to identify executable components that can contain JS snippets,
such as HTML, JS, and URL, by matching each element against the
rules specified in Table 1. If a match is found, the callback extracts
the content enclosed in square brackets, such as [HTML], [JS], or
[URL] (Ln 22). If the type of the extracted contents is HTML, the
same procedure is applied recursively (Lns 23-24). Otherwise, the
extracted components are fed into the next signature generation
step. When a Script or ScriptURL sink is invoked, TrustyMon skips
the process of extracting executable contents because the actual
argument already contains JS code. (Lns 4-5).

Note that Table 1 excludes certain executable contents triggered
by javascript:, which can be executed without user interaction,
such as <iframe src="javascript:[JS]"></iframe>. Instead,
these JS components are extracted when a Script sink, such as
javascript: [27], is invoked.

Signature generation. The Trusted Type callback generates a sig-
nature using the extracted JS snippet or URL (Lns 6-12). For a JS
snippet, it generates an abstract syntax tree (AST) using Acorn [1]
and extracts the AST node types and the AST node values. Specifi-
cally, TrustyMon traverses the AST in a pre-order walk, capturing
a string of each AST node type (e.g., Literal, Identifier, or CallEx-
pression) and the corresponding node value (e.g., eval, window, or
document). When extracting node values, TrustyMon only consid-
ers the values of identifier nodes, which represent built-in objects
or functions. By ignoring other values, TrustyMon accommodates
dynamically changing values, such as timestamps, while consider-
ing built-in objects helps protect against isomorphism attacks (§5.2).
The resulting sequence of AST node types and values forms a JS
signature (Lns 8-9). Similarly, for a URL, TrustyMon computes its
signature by extracting the scheme, domain, and path components
(Lns 10-11). All generated signatures are then hashed (Ln 12) and
sent to the defined endpoint (Ln 14). The signature database stores
these signatures without duplicates.

JS obfuscation. By design, TrustyMon supports signature extrac-
tion from obfuscated JS code. For example, Listing 4 shows ob-
fuscated JS code dynamically injected into sc.text (Ln 2). This
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1 | const sc = document.createElement("script");

2 sc.text = "(function(){const _@xfl1=function(_0x9a){
return btoa(_0x9a);};const _0x3c=function(_0x1,_0x2)
{return _Ox1+'\x3A'+_0x2;};this['\x67\x65\x6E\x54\
X6F\x6B 'J=function(_0x7b){const _0x99=Date['\x6E\x6F
\x77"'1();return _0xf1(_0x3c(_0x7b,_0x99));3:;1)O;";
3 | // Signature: [{"type":"Id"},{"type":"Id"},{"type":"
Id","name":"btoa"},{"type":"Id"},{"type":"CallExpr

" "optional":false},{"type":"ReturnStat"},{"type":"
BlockStatement"}, {"type":"ExprStat"}]

Listing 4: Obfuscated JS injected via Script sink.

obfuscated code is to generate an authorization token. Since this
assignment invokes a Script sink, TrustyMon computes a signature
of the obfuscated JS code and stores it along with its hash. Ln 3
shows an abbreviated signature string of the obfuscated code. Later,
TrustyMon checks whether observed signatures in the monitoring
phase match this extracted signature (§4.3).

However, TrustyMon’s extraction phase can struggle with in-
jected scripts that change their AST structure on each load. For
instance, if a website injects obfuscated JS code into XSS injection
sinks, and the obfuscation varies on each page load while altering
its AST structure, TrustyMon generates a different signature for
each obfuscated JS code, potentially generating false reports. We
further discuss this limitation in §6.

4.3 Monitoring Phase

The monitoring phase aims to detect JS injection attempts at run-
time. This phase begins by placing a CSP header that enables
Trusted Types and a monitoring library. Website operators add
these two components to the website under protection.

The monitoring JS library defines Trusted Type callbacks, which
function similarly to those used in the extraction phase (§4.2.2).
The key difference is that, in the monitoring phase, the callbacks
check whether the current JS snippet to be inserted matches any of
the benign JS signatures extracted in the previous phase (§4.2).

Specifically, each Trusted Type callback in the monitoring library
extracts a JS snippet or URL from the argument string and computes
its signature using the same procedure outlined in §4.2.2. It then
proceeds to the matching process.

When a matching signature is found among the benign signa-
tures, the monitoring JS library converts the argument string into
a Trusted Type object (Lns 16-17), which allows the corresponding
JS snippet to be inserted into the webpage. However, if there is no
matching signature, the injection sink receives the untrusted string,
resulting in a CSP violation (Lns 18-19). The monitoring library
reports this injection attempt, which could indicate a DOM-based
XSS attack. TrustyMon stores the CSP report in the report database
with the timestamp and IP address where the violation occurred.

Listing 5 shows an example of a violation report. The original
CSP report provides the data as listed in Lns 2-5, including the
location of the invoked sink (Lns 2-4), and the first 40 bytes of
the inline script that caused the violation (Ln 5). Additionally, we
include further data as shown in Lns 6-10, which includes the actual
argument string passed to the injection sink (Ln 6), the signature
of the JS snippet (Ln 8), the injection sink, and its type (Lns 9-10).

We note that TrustyMon is designed to monitor JS execution and
send violation reports to a designated endpoint, helping website
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1 "csp-report": {

2 "line-number": 33,

3 "column-number": 8,

4 "source-file": "http://example.com/test_eval",

5 "script-sample": "eval|fetch('//attacker.com', {
method: 'POST',",

6 "content": "fetch('//attacker.com', {method: 'POST',

body: document.cookie})",

7 "domain": "http://example.com/test_eval",

8 "hash": "247c7c04f1ebbb5505b4113e85148d12f7a0f13285
2d332771aa457c38cc5b8b",

9 "sink": "eval",

10 "type": 2

11 3

Listing 5: TrustyMon violation report example.

operators identify ongoing XSS attacks and locate XSS vulnerabili-
ties. Since TrustyMon leverages the Content-Security-Policy-
Report-0nly header (Listing 3), it does not block any JS execution
or disrupt original website functionalities.

Blocking mode. We extend TrustyMon to support a blocking
mode, which prevents the execution of JS scripts whose signatures
are not among the benign JS signatures. In this mode, TrustyMon
actively blocks XSS attempts by enforcing a different Trusted Type
policy. In this Trusted Type policy, when a signature mismatch oc-
curs, TrustyMon not only sends a violation report but also sanitizes
the arguments passed to the injection sinks, preventing further
execution. For each injection sink type, TrustyMon applies tailored
sanitization: for HTML, it uses DOMPurify [21] to sanitize un-
trusted content, while for JS and URLSs, it drops untrusted strings
entirely. Accordingly, sanitized arguments do not trigger JS exe-
cution, effectively blocking DOM-based XSS attempts. However,
this blocking mode is also possible to block legitimate JS execution
when its signature is not listed as benign. In §5.4.2, we analyze the
functional breakages caused by TrustyMon in its blocking mode.

4.4 Benign Signature Maintenance

TrustyMon provides a mechanism for registering new benign JS
signatures using the violation reports stored in the report data-
base. To facilitate this, we implemented Report Controller, which
allows website operators to register the JS signatures from selected
violation reports. Report Controller enables TrustyMon to address
false reports caused by an incomplete set of benign JS signatures
collected during the extraction phase, by simply adding the sig-
nature from a reported violation to the list of benign signatures.
Additionally, Report Controller plays a crucial role in maintaining
TrustyMon when a website under protection updates its web appli-
cation or embedded JS libraries. When new code is introduced, web
operators can trigger the new code using manual tests or end-to-
end automatic testing. If this new code invokes injection sinks with
executable JS snippets, TrustyMon generates violation reports and
sends them to the designated server. Website operators then review
these reports by examining the JS code included in each violation
report, as shown in Listing 5. They can select the relevant JS sig-
natures from these reports and register them as benign signatures
using Report Controller.

5 Evaluation

We evaluated TrustyMon to measure its efficacy in detecting XSS
attacks (§5.2) and overheads that TrustyMon imposes on server-side
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website operators (§5.3) and client-side (§5.4). We also assessed its ef-
fectiveness on the Tranco Top 1,000 websites (§5.6) and explored the
feasibility of extending its monitoring capability to non-Chromium
browsers using a polyfill (§5.5).

5.1 Experimental Setup

Benchmarks. To evaluate TrustyMon, we collected publicly dis-
closed DOM-based XSS vulnerabilities. From the CVE database [9],
we identified approximately 190 CVE numbers associated with the
keyword “DOM XSS”, reported between 2012 and 2024. We then
narrowed them down to about 90 vulnerabilities discovered in open-
source web applications that have received at least 100 stars on
GitHub. Excluding web applications that were uninstallable or had
irreproducible vulnerabilities due to unclear instructions or errors,
we finally selected 19 vulnerabilities from 16 web applications.
These 16 web applications were implemented in various pro-
gramming languages, including PHP, JS, Go, and Python. The scale
of these applications ranged from 0.2K to 3.6M lines of code (LoC).
We also considered the popularity and adoption of these applica-
tions; their GitHub repositories have received a minimum of 140
to 40.7K stars, and their plugins have been downloaded at least 10
million times. Table 5 provides detailed statistics of each benchmark
application.
Attack payloads. In the subsequent evaluations, we assumed a
website operator seeking to deploy TrustyMon in each of these
web applications. For each vulnerability, we devised three to five
attack payloads designed to exploit the vulnerability. These pay-
loads were crafted by referencing the OWASP XSS cheat sheet,
which compiles a comprehensive list of XSS attack vectors and fil-
ter evasion techniques [43]. Each payload exploits a different attack
vector involving filter bypass methods or malformed tags. For the
19 vulnerabilities, we prepared a total of 75 attack payloads.
ScriptProtect. We compared TrustyMon to ScriptProtect [41],
which is the only DOM-based XSS detection tool with a publicly
available implementation for which we were able to reproduce their
reported results. ScriptProtect instruments injection sink APIs and
allows trusted first-party code. To determine whether the code is
from the first party, it inspects the stack trace of the current ex-
ecution thread and checks if the call was initiated by the trusted
first party. If so, ScriptProtect allows the execution by passing the
unaltered value to the AP If the call originated from a third-party
script, the value is sanitized. We deployed ScriptProtect on our
benchmark applications using the version available in its GitHub
repository [40]. We only modified the htm1SinksOnly option to
monitor script injection sinks in addition to HTML injection sinks.
Environment. Our experiments were conducted on a Linux work-
station equipped with two Intel Xeon E5-2620 v4 CPUs and 128
GB of RAM. We also prepared Docker containers to host the web
applications. For the browser, we employed Chrome version 126.

5.2 Effectiveness

We assessed the capabilities of TrustyMon in detecting DOM-based
XSS attacks in real time. For this evaluation, we considered a sce-
nario in which a website operator adopts the default configuration
of TrustyMon without any manual effort in collecting benign sig-
natures. By default, TrustyMon collects signatures by crawling
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Table 2: Evaluation of TrustyMon on 16 real-world applica-
tions in detecting XSS attacks.

Detection
Application Signatures CVE Sink _

T™* SP*

2021-24891  innerHTML v X

Elementor STOSOI21) 535 20455 setttribute v X
Yoast SEO 4(0/3/1) 2012-6692 innerHTML v X
MyBB 0(0/0/0) 2020-15139  innerHTML v X
Microweber 15 (8/7/0) 2022-0698 innerHTML v X
OpenEMR 13 (1/12/0) 2022-2729 innerHTML v X
AbanteCart 2 (0/2/0) 2021-42050  innerHTML v v
Apache Answer 10 (0/0/10) 2023-0741 innerHTML v X
draw.io 16 (0/0/16) 2022-3873 innerHTML v X
URL Pages 0 (0/0/0) 2024-26468 write v X
Railroad-diagram 1(0/1/0) 2024-26467 eval 4 X
Web-platform-tests 11 (0/1/10) 2024-26466 eval v X
Beep.js 1(0/1/0) 2024-26465 eval v X
Cesium]S 342 (2/38/302) 2023-48094 innerHTML v X
LibreNMS 1(0/1/0) 2023-5060 innerHTML v X
Cacti 11 (7/3/1) 2023-39360  href (location) v X
2023-1517 innerHTML v X

Pimcore 62 (0/40/22)  2023-2343 innerHTML v X
2023-2614 innerHTML v X

* TM: TrustyMon, SP: ScritpProtect

# of signatures

o

0 5 10 15 20 25

Crawling time (min)
Figure 2: Cumulative number of signatures over the elapsed
crawling time.

webpages with a timeout of 60 minutes and a crawl depth of 10
levels, allowing it to crawl only pages reachable within a specified
number of clicks or levels from the starting page. For each web
application, we conducted the extraction phase of collecting benign
signatures and then deployed the TrustyMon monitoring library to
webpages under protection to detect DOM-XSS attacks. We tested
both the monitoring and blocking modes of TrustyMon and found
no difference in their ability to detect ongoing attacks.
Signatures. Table 2 shows the experimental results. The “Signa-
tures” column presents the number of signatures collected during
the extraction phase of TrustyMon. The numbers in parentheses
indicate the number of signatures extracted from each Trusted Type
of XSS injection sink (i.e. HTML, Script, and ScriptURL).

TrustyMon collected a total of 546 signatures, including 18 HTML
(3.30%), 145 Script (26.56%), and 383 ScriptURL (70.15%) signatures.
Out of these, 342 (62.64%) were extracted from Cesium]S, which
loads 297 third-party libraries. On average, 34.13 signatures were
collected from each application.

Figure 2 illustrates the cumulative number of extracted signa-

tures over the crawling time for all applications. Notably, 99% of the
signatures were collected within the initial 12 minutes of crawling
across all applications.
Attack detection. In Table 2, the third column represents the CVE
identifiers of DOM-based XSS vulnerabilities. The fourth column in-
dicates the injection sink that triggers each vulnerability, including
innerHTML, setAttribute, write, eval, and href.



ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

1 function (_bundle, _checkForLegacyModules, _mid, _amdValue) {
2 var define = function(mid, factory) {

3 define.called = 1;

4 _amdValue.result = factory || mid; 3},

5 require = function() {define.called = 1;};

6 try {

7 define.called = 0;

8 eval (_bundle);

9 if (define.called == 1) return _amdValue;

10 if (_checkForLegacyModules = _checkForLegacyModules(_mid))
11 return _checkForLegacyModules;

12 } catch (e) {3}

13 try {return eval('(' + _bundle + ')');}

14 catch (e) {return e;}

15 |3

Listing 6: Benign JS snippet from Cesium]Js.

The last two columns describe whether TrustyMon and Script-
Protect detected XSS attacks exploiting the corresponding vulnera-
bility in the CVE column, respectively. As the “TM” column shows,
TrustyMon successfully identified all XSS attacks that exploited 19
DOM-based XSS vulnerabilities. For 13 attack payloads, TrustyMon
detected them because they had different signatures from the ex-
tracted benign ones. The remaining payloads were detected because
there were no benign signatures for the corresponding injection
sinks, which either are not intended to accept JS code or are not
covered in common use cases.

In the “SP” column, the green check mark indicates that Script-

Protect detected and blocked XSS attacks. ScriptProtect identified
only one vulnerability in AbanteCart. The 13 orange X marks indi-
cate that ScriptProtect checked the injection sinks but allowed the
XSS attacks since it determined they came from first-party code.
Among the five red X marks, the three vulnerabilities triggered
with eval were not detected since ScriptProtect has limitations in
instrumenting the eval function. The vulnerability in Elementor
was not detected because ScriptProtect missed the inspection of the
setAttribute method when setting values of onXXX events, such
as onload, onclick, and onerror. For the vulnerability in Cacti,
we were unable to trigger the vulnerability due to the compatibility
of ScriptProtect. When ScriptProtect was applied, certain buttons in
Cacti were not displayed, preventing the vulnerability from being
triggered. These experimental results demonstrate the capability of
TrustyMon to collect benign JS signatures without manual effort
and its efficacy in identifying DOM-based XSS attacks without false
negatives.
Signature isomorphism attacks. Recall that TrustyMon gener-
ates benign signatures extracted from the AST node types (e.g., Call-
Expression, Identifier) and AST node value for built-in objects and
functions (e.g., window, eval) of JS snippets (§4.2.2). The adversary
is thus able to exploit this scheme by conducting JS isomorphism
attacks [12], injecting a malicious JS snippet of which the signature
matches a benign one. Therefore, we evaluated the robustness of
our signature scheme against JS isomorphism attacks.

Specifically, we used HideNoSeek, a generic isomorphism attack
tool proposed by Fass et al. [11, 12]. It modifies the AST of a ma-
licious JS snippet to mimic the syntax of a given benign one. We
prepared five malicious JS snippets with distinct AST structures,
varying from alerting strings to stealing cookies. We also gathered
all benign JS snippets that TrustyMon collected from each appli-
cation. We then searched for isomorphic subgraphs between the
malicious and benign ASTs and replaced benign sub-ASTs with
malicious ones using HideNoSeek.
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Table 3: False violation reports when simulating website visi-
tors using Crawljax.

Applications # of Requests  Elapsed time  # of False reports
Elementor 212 40s 0
Yoast SEO 424 6m 9s 0

MyBB 78 20s 0
Microweber 272 3m 52s 0
OpenEMR 1,463 60m 1(0/0/1)
AbanteCart 375 1m 15s 0
Apache Answer 653 1m 3s 2(0/0/2)
draw.io 23 8s 0
URL Pages 52 1m 22s 0
Railroad-diagram 6 7s 0
Web-platform-tests 13,333 57m 27s 12 (1/0/11)
Beep.js 27 8s 0
Cesium]JS 598 1m 6s 2(0/0/2)
LibreNMS 109 21s 1(1/0/0)
Cacti 56 11s 0
Pimcore 25,732 60m 0

Out of 145 Script signatures in Table 2, HideNoSeek generated 37
isomorphic JS snippets. However, we confirmed that all 37 malicious
JS snippets failed to bypass TrustyMon due to mismatched AST
values since HideNoSeek considers only AST types when searching
for isomorphic subgraphs, not AST values for built-in objects.

Furthermore, we manually investigated whether the 145 benign
JS snippets in Table 2 could be forged to include attack payloads. In
Cesium]S, we managed to identify one benign JS snippet of which
the signature can be exploited to match the one of a malicious JS
snippet, as shown in Listing 6. The adversary is able to change the
character “(" in Line 13, the argument of eval. Since the charac-
ter is of the literal type, TrustyMon does not consider its value.
Accordingly, TrustyMon generates the same signature for the be-
nign snippet even after modifying “(” to any string including attack
payloads. However, when injecting a malicious JS snippet into the
eval, TrustyMon also matches the signatures of this JS snippet to
be executed via eval calls to the benign ones. Thus, we were unable
to program malicious JS snippets that bypass TrustyMon.

In summary, the signature scheme of TrustyMon considering
AST node types as well AST node values for built-in objects and
functions increases the robustness against the isomorphism attacks,
effectively mitigating advanced XSS attacks.

5.3 Server-side User Experience

We evaluated how TrustyMon facilitates maintaining benign sig-
natures using Report Controller when false reports are generated
(§5.3.1) and when web applications are updated (§5.3.2).

5.3.1 False Reports. We measured how many false alarms Trusty-
Mon reported as DOM-based XSS attacks for each benchmark appli-
cation. The root causes of false attack reports stem from incomplete
sets of benign signatures that were not captured during the ex-
traction phase. To simulate user behaviors different from those
executed to collect benign signatures during the extraction phase,
we used an event-driven web crawler, Crawljax [10]. For each web
application, we let Crawljax explore webpages with the default
configuration.

Table 3 shows the experimental results. The second and third
columns represent how long and how many requests were sent. On
average, Crawljax sent 2,713 requests in 15.53 minutes. The number
of sent requests and the elapsed testing times varied from six to
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Table 4: JS signature changes over code updates of 16 web applications.

c Version Signatures | Version Signatures U.nchanged Version Signatures U.nc}“ngd Version Signatures U.nchanged
Application (M) (T) (Ty) (T,) Signatures (T) (T) Signatures (T) (T) Signatures
(I » Th) (Is - Th) (I, » T1)
Elementor 3.4.7 57 3.4.6 57 57 (100.0%) 3.2.0 57 57 (100.0%) 3.0.12 58 57 (98.28%)
Yoast SEO 2.1 4 2.0.1 4 4 (100.0%) 1.6.3 4 4 (100.0%) 155 4 4(100.0%)
MyBB 1.8.22 0 1.8.21 0 - 1.8.20 0 - 1.8.19 0 -
Microweber 13.1 15 1.3.0 15 15 (100.0%) 129 14 10 (71.43%) 123 6 3 (50.0%)
OpenEMR 7.0.0 13 6.1.0.1 16 15 (93.75%) 6.0.0.3 16 15 (93.75%) 6.0.0.2 16 15 (93.75%)
AbanteCart 13.1 2 13.0 2 2 (100.0%) 1.2.13 2 2 (100.0%) 1.2.12 2 2 (100.0%)
Apache Answer 1.0.2 10 1.0.1 10 9 (90.0%) 1.0.0 10 7 (70.0%) - - -
draw.io 20.5.0 16 20.4.2 16 16 (100.0%) 17.4.3 14 9 (64.29%) 15.5.8 11 8(72.73%)
URL Pages 035b647 0 0d82cb9 0 - 6fb7c47 0 - 52780d6 0 -
Railroad-diagram | ea%9a123 1 928618 1 1 (100.0%) c3al6b9 1 1 (100.0%) eab712c 1 1 (100.0%)
Web-platform-tests | 938e843 11 02823cf 11 11 (100.0%) 3933453 11 11 (100.0%) e7a8ee5 11 11 (100.0%)
Beep.js ef22ad7 1 cf4fofd 1 1 (100.0%) 795215 0 - - - -
Cesium]S 1.111 342 1.110.1 342 342 (100.0%) 1.105 339 338 (99.71%) 1.99 339 338 (99.71%)
LibreNMS 23.9.0 1 23.8.2 1 1 (100.0%) 23.2.0 1 1(100.0%) 22.8.0 1 1(100.0%)
Cacti 1.2.24 11 1.2.23 10 7 (70.0%) 1.2.22 16 10 (62.50%) 1.2.19 15 4(26.67%)
Pimcore 10.5.18 62 10.5.17 62 62 (100.0%) 10.5.4 62 62 (100.0%) 10.3.1 62 62 (100.0%)
Average | 3413 | 34.25 33.94(99.09%) | 34.19 32.94 (96.34%) | 37.57 36.14 (96.20%)

25,732 and from seven seconds to 60 minutes, depending on the
target web applications.

The number of false reports in the last column indicates how
many false reports TrustyMon generated. For 11 applications,
TrustyMon generated no false positives, while for five applications,
TrustyMon generated 18 false reports. On average, TrustyMon pro-
duced 1.13 false reports. The false reports were produced due to the
limitations of the crawler. Although TrustyMon could collect more
signatures when increasing the timeout of the crawler or using
additional web crawlers, it is still challenging to visit all webpages
and trigger available events to extract all benign signatures. To
address this challenge, TrustyMon provides Report Controller to
assist website operators in adding benign signatures that might not
have been covered by the crawler.

Report Controller provides a web interface for maintaining sig-
natures. After examining each report, if it is determined to be a
false alarm, web operators can easily add this signature to the set
of benign signatures by clicking a button, as shown in Figure 4
(Appendix D). For the above 18 false reports, we manually investi-
gated each report and determined all to be benign signatures, which
took about ten minutes for one author. It demonstrates that website
operators can easily enhance their benign signatures when faced
with false alarms using Report Controller.

5.3.2  Application Updates. When a target server-side application
is updated, the extraction phase should be conducted again. Other-
wise, TrustyMon might produce false alarms. Fortunately, the re-
lease cycle of most popular JS libraries is at least six months [22, 39].
We further validated how many signatures changed after updating
the web applications in the benchmarks.

For each application released at T;, we prepared three additional
versions of the application; the immediate previous version, the
version released more than six months prior, and the version re-
leased more than twelve months prior. We denoted these selected
times as Tz, T3, and T3 in descending order. We measured how many
signatures had changed over each of these time periods.

Table 4 summarizes the evaluation results. The "Version" columns
represent the selected versions of web applications corresponding
to each time period. For Apache Answer and Beep.js, there were
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no versions suitable for T3. Thus, we selected the oldest release as
T3. For AbanteCart, there was a three-year gap between T and its
previous version. Thus, we set T3 as the release prior to Tz, and Ty
as the release prior of T3.

The "Signatures" columns represent the number of signatures
collected in each version of the application. The "Unchanged Signa-
tures" columns represent the number of signatures unchanged from
Ty, to T1 and the number in parentheses indicates the corresponding
percentage. For example, in the sixth column, we analyzed which
signatures collected at T, remained in the updated application re-
leased at Tj.

On average, about 99.09%, 96.34%, and 96.20% of signatures re-
mained unchanged from Ty, T3, and T4 to Ty updates, respectively.
It shows that the majority of the signatures remained unchanged.
Additionally, we found that the average number of newly added
signatures over a year was approximately 1.64. We expect that web
operators can incorporate such minor changes using Report Con-
troller, which reduces the burden of regenerating benign signatures.

5.4 Client-side User Experience

5.4.1
that TrustyMon imposes from the perspective of clients visiting
TrustyMon-protected websites. For this, we collected webpages con-
taining injection sinks that add executable JS components for each
web application. We then loaded each webpage ten times without
browser caching, measuring page loading times with and with-
out TrustyMon. Finally, we computed the average latency across
webpages from each application. We found no significant latency
differences between the monitoring and blocking modes of Trusty-
Mon in detecting attacks. We thus report the latency of TrustyMon
with its default monitoring mode.

Figure 3 depicts the experimental results. The gray bars rep-
resent the average page loading time in a vanilla browser (i.e.,
without TrustyMon or ScriptProtect). The left red and right black
bars stacked on the gray bars indicate the latency introduced by
TrustyMon and ScriptProtect, respectively.

Figure 3 shows that TrustyMon incurs an average latency of
approximately 27.02 ms (5.68%) across the benchmark applications.

Performance Overhead. We evaluated the latency overhead



ASIA CCS 25, August 25-29, 2025, Hanoi, Vietnam

Sunnyeo Park, Jihwan Kim, Seongho Keum, Hyunjoon Lee, and Sooel Son

3(3352)5 Vanilla = TrustyMon  EEEE ScriptProtect
39.7ms
1250 | l (3.5%)
—
H ]
£ 1000 A ==y | 3%
£ 14.3ms —n
> 750 202k 11.0ms
£ [ ] 87.4ms (1.8%)
T (19.9%) | 39.85ns
< 5004 u 33.7ms (8.9%)
9
S . (10-14 28.6ms 7.7ms =
= 36.7ms = 2.1ms (12.2%) (2.9%)
1 ) 9 — O
250 (40.5%) (11%) 01ms  06MS 3,
— . (-03%) (L1%) (470%)
T T T T T T T T T T _I_ T T T T T
Elementor Yoast SEO MyBB Microweber OpenEMR AbanteCart Apache  draw.io URL Railroad Web Beep.js CesiumJS LibreNMS  Cacti Pimcore
Answer Pages diagram  platform

tests

Figure 3: Latency overheads of TrustyMon and ScriptProtect.

Microweber exhibited the largest overhead, with an average page
loading time increase of approximately 171.81 ms when TrustyMon
was active. This is because Microweber invokes many injection
sinks and the JS code passed to these sinks is relatively large, result-
ing in additional overhead for parsing the JS code and computing
signatures. Additionally, the blocking mode incurs an average la-
tency of approximately 26.57 ms (5.58%), which is comparable to
the monitoring mode.

In Figure 3, for each application, the number between the two
bars represents the loading time difference in milliseconds, and the
following percentage indicates the proportion of this difference
relative to the original loading time without TrustyMon. For in-
stance, in Pimcore, the loading time difference between TrustyMon
and ScriptProtect is 90.7 ms, accounting for 10.3% of the original
loading time of the web application.

Overall, ScriptProtect incurred an average latency of approxi-
mately 55.19 ms (11.60%), while TrustyMon consistently produced
less overhead across most applications, except for URL Pages and
Web platform tests. For these two applications, the differences were
minimal, with values of just 0.1 ms and 1.3 ms, respectively. Trusty-
Mon leverages browser features to monitor injection sinks, unlike
ScriptProtect which instruments sink APIs, resulting in largely
lowering its overhead.

5.4.2  Functionality Breakage. TrustyMon does not cause any func-
tional breakage in its default monitoring mode. However, in the
blocking mode (§4.3), TrustyMon affects website functionalities,
potentially disrupting legitimate operations. To evaluate the impact
of the TrustyMon blocking mode on the functionality of target
websites, we compared user experiences before and after deploying
TrustyMon. Specifically, we examined differences in the rendered
webpage, DOM structure, HTTP responses, and JS console logs
while exploiting the vulnerabilities listed in Table 2. For 19 vulnera-
bilities, TrustyMon successfully blocked all attack attempts. It effec-
tively prevented malicious payloads injection without introducing
any visible functionality breakages on the rendered webpages.
While TrustyMon did not interfere with the legitimate webpage
functionalities when blocking potential attacks, false alarms can
introduce usability issues. To assess this impact, we conducted
the same experiments described in §5.3.1. Across five applications,
TrustyMon generated 18 false reports, leading to blocked legitimate
JS execution and partial functionality breakages on three webpages.
These breakages included incomplete message displays, slight UI
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rendering differences, and failed script loading within an iframe.
However, by leveraging Report Controller, we registered 18 JS
signatures, preventing functionality breakages. This process only
took 10 minutes for one author.

5.5 Extended Browser Support via Polyfill

We assess the feasibility of deploying TrustyMon on non-Chromium
browsers. The W3C provides a polyfill implementation to support
Trusted Types in non-Chromium browsers, such as Firefox and
Safari [61]. It is straightforward to deploy TrustyMon using this
polyfill (referred to as TrustyMoney in the following). Instead of
inserting a CSP header, TrustyMoney activates Trusted Types by
including the polyfill library (trustedtypes.js) with the data-csp
attribute as follows:

<script src="trustedtypes.js" data-csp="trusted-types
default; require-trusted-types-for “script'"></script>

Using the same implementation of Trusted Types policies as
TrustyMon, we evaluated the effectiveness of TrustyMon,y in Fire-
fox. During the extraction phase, TrustyMoney collected 235 signa-
tures. Some signatures could not be collected due to the polyfill’s
lack of support for certain injection sinks, such as eval, Func-
tion(), or Worker ().

In the monitor phase, TrustyMon,y successfully detected 16
vulnerabilities among 19. It failed to detect three vulnerabilities
since the polyfill does not support eval. Additionally, the polyfill
does not report the line and column numbers where violations
occur. Despite these limitations, TrustyMoneyx demonstrates the
feasibility of deploying TrustyMon on non-Chromium browsers.

5.6 Real-world Deployment

To evaluate the efficacy of TrustyMon on real-world websites, we
expanded our benchmark to include the Tranco Top 1,000 web-
sites [28]. For each website, we artificially injected a DOM-based
XSS vulnerability using a proxy server [38]. Specifically, we modi-
fied the HTTP response intercepted via the proxy to include DOM
injection sinks such as innerHTML or eval.

To deploy TrustyMon for protecting these websites, we injected a
CSP header and the TrustyMon libraries via the proxy. We collected
benign signatures by crawling each website with a timeout of 10
minutes. We then compiled and deployed the monitoring library to
detect DOM-based XSS attacks.
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Out of the 1,000 websites, 273 websites blocked TrustyMon dur-
ing the signature generation phase: 230 websites were inaccessible
due to client-side errors (4xx), server-side errors (5xx), or unresolv-
able hostnames, while 40 websites were excluded for exceeding a
loading time of 30 seconds. Additionally, three websites had already
deployed their CSP policies that blocked the execution of the in-
jected vulnerabilities. Note that these cases do not indicate an issue
with TrustyMon itself. Previous work by Jannis et al. also reported
a similar failure rate when crawling Tranco top websites [47], since
many of these websites require specific URL paths and parameters
to be accessed, such as those hosted on CDN servers.

For the remaining 727 websites, we collected a total of 19,667
signatures, comprising 465 HTML (2.36%), 6,558 Script (33.35%),
and 12,644 ScriptURL (64.29%) signatures.

After loading the monitoring library, we conducted three DOM-
based XSS attacks involving same-origin CSRF attacks, secret to-
ken harvesting, and cookie exfiltration. TrustyMon successfully
detected all 2,181 XSS attacks without false negatives. During the
attack detection phase, we measured the latency introduced by
TrustyMon. On average, TrustyMon imposed an overhead of 334.68
ms (9.07%) across these websites. Since we deployed TrustyMon
on real-world websites using a proxy, it incurred higher overhead
compared to our benchmark evaluations.

We also evaluated how many false alarms TrustyMon reported
while traversing websites using Crawljax for a maximum 10 min-
utes. Out of 481 websites, TrustyMon generated no false positives,
while for 246 applications, it generated a total of 750 false reports.
On average, TrustyMon produced 1.03 false reports. We highlight
that these minor false alarms can be easily addressed by website
operators by enhancing their benign signatures using Report Con-
troller, which took us less than one minute per report.

Additionally, we analyzed how signatures evolved over time.
Three months after the initial benign signature collection, we recol-
lected benign signatures and compared them. On average, about 10
new signatures were added per website during this period. These
experimental results demonstrate the efficacy of TrustyMon in
detecting DOM-based XSS attacks with minimal deployment effort.
Ethics consideration. For real-world websites, we set the crawling
time to 10 minutes to minimize the load on the servers. We also
did not directly attack the websites. Instead, we artificially injected
DOM injection sinks via a proxy to simulate attack scenarios.

6 Discussion

Comparison with CSP and Trusted Types. The disparities be-
tween these security mechanisms stem from differences in their
policy granularity. CSP relies on origins to define allowed sources
for fetching web resources. Accordingly, DOM-based XSS preven-
tion is enforced based on the origin sources of these resources,
which introduces difficulties in composing finer-grained policies.
For example, a CSP may allow a third-party script to execute arbi-
trary JS snippets that contain a DOM-based XSS vulnerability. If
so, the adversary is able to certainly exploit this vulnerability even
with the presence of CSP [53, 57].

In contrast, TrustyMon and Trusted Types are able to mitigate
this threat. TrustyMon offers a finer-grained policy framework
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based on JS and URL signatures, enabling it to detect script injec-
tion attempts even from sources permitted by a CSP. Trusted Types
takes this a step further by allowing the use of programmed types
to specify permitted JS execution. The difference between the dif-
ficulty and engineering costs of composing a CSP policy versus a
TrustyMon policy is arguable. Nonetheless, both are relatively eas-
ier than deploying Trusted Types because implementing a Trusted
Types policy and enforcing this policy in web applications neces-
sitates significant engineering effort in making modifications to
existing JS code [63].

CSP compatibility. TrustyMon is compatible with existing CSPs.
TrustyMon requires an existing CSP to only include the require-
trusted-types-for directive, which enables website operators to
easily extend their security protections. Also, TrustyMon is capable
of detecting JSONP XSS and XSS attacks that exploit vulnerabil-
ities introduced by trusted third-party JS snippets [64], thereby
addressing security gaps that existing CSPs may leave exposed.
Browser coverage. Safari and Firefox currently do not support
Trusted Types. However, Mozilla has announced plans to imple-
ment Trusted Types in Firefox [8]. Meanwhile, TrustyMon is able
to extend its support to non-Chromium browsers by using a poly-
fill that implements Trusted Types [61], as demonstrated in §5.5.
When deploying TrustyMon with the polyfill, it is still able to de-
tect DOM-based XSS attacks while it loses the ability to monitor
JS injection attempts exploiting the eval function and to report
the exact line and column numbers where violations occur. Ad-
ditionally, we investigated the impact of the lack of support for
eval. While collecting 19,667 signatures from real-world websites
(§5.5), we found that the eval function was invoked in 191 scripts.
However, we believe that deploying TrustyMon with the polyfill
remains a promising approach for monitoring DOM-based XSS
attacks, considering that ScriptProtect also lacks support for eval.
Furthermore, even without the polyfill, TrustyMon still covers 77%
of browser users (i.e., Chromium-based browser users).

Polluting benign signatures. We considered a scenario in which
an abusive third-party library attempts to change the benign JS
signatures that TrustyMon leverages. To mitigate this threat, we
encompassed the monitoring library within JS closures and lever-
aged Immediately Invoked Function Expression (IIFE) [34] to access
TrustyMon objects. Moreover, we froze the JS object holding benign
JS signatures to make it immutable in runtime.

Limitations in URL Signatures. TrustyMon uses the URL argu-
ment of ScriptURL injection sinks as its signature, without inspect-
ing the content of the scripts. This approach introduces two limita-
tions. First, false reports of DOM-based XSS attacks can occur when
the URL changes each time the website loads, particularly if the URL
contains random or hash values. For example, URLs like ondemand.
s.25603eca. js and ondemand. s. 4e5a585a. js may trigger false
reports. To prevent this, web operators are encouraged to define
patterns for trusted URLs.

Second, certain attack scenarios could bypass this approach by
modifying the content of the script without changing the URL.
This could occur if the server hosting the script is compromised
or if an attacker injects malicious code through vulnerabilities in
the script-serving process. In the first scenario, we assume that all
servers hosting scripts for the target application are trusted during
the signature extraction phase, and thus, attacks involving server
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compromises are considered outside the scope of our system. In the
second scenario, scripts loaded over HTTPS are protected from man-
in-the-middle (MITM) attacks, ensuring that their content cannot
be altered during transit. However, scripts delivered over HTTP
remain vulnerable to interception and modification before reaching
the target application. To mitigate these risks, we recommend that
all server hosting scripts be configured to use HTTPS.
Maintenance of TrustyMon. By leveraging the browser’s built-in
feature, Trusted Types, TrustyMon reduces the burden on website
operators to maintain TrustyMon as browsers evolve. Specifically,
when new methods that could serve as DOM-based XSS injection
sinks become available, Chrome updates Trusted Types to support
these new injection sinks. For example, Trusted Types can monitor
methods like Element. setHTMLUnsafe(), which were introduced
in Chrome in April 2024 [7].

However, since TrustyMon is based on an allowlist of signatures,
website operators should maintain a complete and up-to-date sig-
nature allowlist to avoid false reports as websites evolve or when
uncovered signatures are found. To simplify allowlist management,
TrustyMon provides Report Controller, making it easy for opera-
tors to add new signatures from violation reports and increase its
coverage on benign signatures.

Additionally, when browsers introduce new elements or at-

tributes that can contain JS components, or when new attack vec-
tors emerge for injecting JS snippets, the matching rules in Table 1
should cover these new attack vectors to provide comprehensive
monitoring of DOM-based XSS attack attempts. We believe that
updating matching rules is straightforward, as it only demands
adding new element tags or attribute names.
Impact of obfuscated code. From the Tranco 1,000 websites, we
identified seven websites where obfuscated JS code was injected
into XSS sinks. TrustyMon remains robust against obfuscation as
long as the obfuscated JS code remains consistent between the
extraction and monitoring phases. During extraction, TrustyMon
records signatures of obfuscated JS code passed as actual argu-
ments to XSS injection sinks. In the monitoring phase, it matches
the executed obfuscated JS code against these registered signatures.
However, TrustyMon may generate false reports if a website (1)
dynamically generates obfuscated JS code that changes its AST
structure on each load and (2) executes this code via XSS injection
sinks. Among the Tranco Top 1,000 websites, we observed only one
instance where dynamically injected JS code exhibited variable ob-
fuscation in an XSS injection sink. This suggests that such dynamic
injection of variably obfuscated ]S is relatively rare in practice. We
emphasize that this limitation arises from the absence of consistent
JS signatures rather than JS obfuscation itself.

7 Related Work

DOM-based XSS vulnerability detection. Prior research has fo-
cused on preventing DOM-based XSS vulnerabilities by mitigating
the occurrences of attacks in the first place [21, 41, 62] or identifying
the vulnerabilities before deployment [5, 29, 35, 36, 44, 46]. DOM-
Purify sanitizes a given input string by removing dangerous HTML
code that does not appear in the allowlist [21]. Musch et al. [41]
and Wang et al. [62] introduced secure APIs to replace native APIs
that are vulnerable to DOM-based XSS. They instrumented native
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APIs to prevent the injection of untrusted scripts. Several stud-
ies proposed approaches that detect DOM-based vulnerabilities by
identifying potential vulnerable candidates and generating attack
payloads using dynamic taint analyses [5, 29, 35] and hybrid analy-
ses [44]. Instead of generating exploits, Dexter]S generates patches
for the detected DOM-based XSS vulnerabilities using dynamic taint
analysis [46]. Melicher et al. trained machine learning classifiers
to analyze JS functions and predict whether they are vulnerable to
DOM-based XSS attacks [36]. However, these approaches still leave
users unprotected from unknown vulnerabilities and new attack
vectors, which TrustyMon is able to mitigate.
DOM-based XSS attack monitoring. Dynamic monitoring ap-
proaches can serve as the second line of defense by detecting on-
going XSS attacks in real time [4, 16, 17, 24, 39, 55, 59]. Previous
methods have employed allowlist-based filtering methods to dy-
namically detect XSS attacks. These approaches collect an allowlist
before deployment and then check whether the script contents
to be executed exist in the allowlist by using a proxy [59], instru-
menting the JS engine [39], or monitoring HTTP traffic [16, 17].
Stock et al. identified attacker-controllable data using character-
level taint tracking and checked whether the tainted data changed
the execution flow [55]. xJS detects XSS attacks using randomiza-
tion [4]. For JS snippets, the modified web server applies XOR op-
eration with an isolation key and Base64 encoding. Conversely, the
modified web browser decodes all scripts using Base64 and applies
XOR operation with a de-isolation key. However, these approaches
require significant modifications to server-side web applications or
browser changes, or introduce non-negligible execution overhead,
making them challenging to deploy on real-world websites.
Additionally, CSP can detect XSS attacks by specifying which
content is allowed to load and execute on each page [37, 51]. How-
ever, crafting and maintaining accurate CSP policies is challeng-
ing, as websites become more complex and the CSP specification
evolves [48, 64, 66]. To facilitate deploying CSP, researchers have
proposed approaches for automatically generating CSP [13, 45].

8 Conclusion

We presented TrustyMon, a dynamic monitoring framework ca-
pable of accurately detecting DOM-based XSS injection attacks.
TrustyMon leverages Trusted Types to dynamically monitor any
DOM-based XSS injection attempts at client-side user browsers.
TrustyMon checks for the existence of the signatures of injected
scripts to be executed among the benign JS signatures and reports
any violations. Our evaluation results demonstrate that TrustyMon
is capable of accurately detecting DOM-based XSS attacks while
imposing negligible performance without requiring any changes to
existing server-side web applications or web browsers. TrustyMon
is readily deployable on any websites to enable the detection of
DOM-based XSS attacks while imposing only light deployment
costs and yielding huge security advantages.
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A Benchmarks

To evaluate TrustyMon, we prepared 16 web applications that had at
least one DOM-based XSS vulnerability. Table 5 describes statistics
for each application. The first and second columns represent the
name and version of a benchmark application. The following three
columns describe the main programming language used, the total
lines of code (LoC), and the number of stars on its GitHub repository
or the number of user downloads, respectively.

We selected these benchmarks based on their popularity and di-
versity. These applications were implemented in various languages,
including PHP, JS, Go, and Python, with LoCs ranging from 229 to
3.6M. Their GitHub repositories have received a minimum of 140 to
40.7K stars. The number of user downloads of WordPress plugins
is over 10M, as reported on their respective download pages.

Table 5: Benchmark web applications (WP: WordPress).

Applications Version Language LoC Gslg:_ls‘b
Elementor (w/ WP) 3.4.7 (5.8.1) PHP 7.4 316,863  10M+* (19.3k)
Yoast SEO (w/ WP) 2.1 (4.2.1) PHP74 158,171  10M+* (19.3k)

MyBB 1.8.22 PHP 7.4 131,467 1.1k
Microweber 1.3.1 PHP 8.1 1,870,564 3.1k
OpenEMR 7.0.0 PHP 7.4 2,070,073 3.1k
AbanteCart 1.3.1 PHP 7.4 263,831 140
Apache Answer 1.0.2 Go 31,800 12.6k
draw.io 20.5.0 JS 281,973 40.7k
URL Pages commit 035b647 JS 229 1.4k
Railroad-diagram  commit ea9a123 Python 2,446 1.6k
Web-platform-tests ~ commit 938e843 JS 376,691 4.9k
Beep.js commit ef22ad7 JS 1,428 1.4k
Cesium]S 1.111 JS 3,671,809 12.8k
LibreNMS 23.9.0 PHP 8.1 866,182 3.8k
Cacti 1.2.24 PHP 7.4 161,750 1.6k
Pimcore 10.5.18 PHP 7.4 2,706,124 3.3k

* User downloads

1336

=

_ =

Sunnyeo Park, Jihwan Kim, Seongho Keum, Hyunjoon Lee, and Sooel Son

export class SafeXMLUtils {
constructor (xmlString) {
xmlPolicy = trustedTypes.createPolicy('xml-policy', {
createHTML: (s) => (s),
N
const xml = xmlPolicy.createHTML(xmlString);
const parser = new DOMParser();
this.xmlDoc = parser.parsefFromString(xml,
}
}

"text/xml');

S VXU W

Listing 7: JS example using Trusted Types in Chrome.

function triggerDocsCanvasAnnotationMode () {
const extId = document.currentScript.src.split('/')[2];
const scriptContents = ~
window['_docs_annotate_canvas_by_ext'] = "${extId}";

;

const policy =
createScript:

1

const sanitized =

eval(sanitized);

3

trustedTypes.createPolicy('gdocsPolicy', {
(text) => text,

policy.createScript(scriptContents);

[ e I - S, I SEEC I U

Listing 8: JS example using Trusted Types in Chrome.

B Comparison with Trusted Types and
TrustyMon

Trusted Types. Trusted Types can be enforced through user-
defined, immutable policies that define how strings are converted
into Trusted Type objects.

Listings 7 and 8 show JS snippets demonstrating how Trusted
Types are deployed in Chromium [14]. Each example defines a
Trusted Types policy using createPolicy in Lines 3-5 and 6-38,
respectively. In both cases, the policy returns the input as is, with-
out modifying or sanitizing the argument passed to the injection
sink (Lines 4 and 7). Using this policy, the createHTML and cre-
ateScript functions convert a dynamic or constant string into a
Trusted Type object (Lines 6 and 9). Finally, the created Trusted
Type object is passed to the injection sink (Lines 8 and 10).

As demonstrated in these examples, adopting Trusted Types

requires web developers to define appropriate policies and make
substantial modifications to their applications. This involves as-
signing Trusted Types to variables that affect webpage output and
incorporating sanitization logic to ensure that only validated values
are used.
TrustyMon. Unlike Trusted Types, TrustyMon does not require
developers to define custom policies. To enable TrustyMon, web-
site operators only need to inject a CSP header and include the
TrustyMon library. The library includes predefined Trusted Types
policies, which work across different applications without requiring
any modifications.

Listing 9 presents the pseudocode for TrustyMon'’s Trusted Types
policy. It defines a default policy that is automatically invoked
whenever an injection sink receives a string instead of a Trusted
Type object. In TrustyMon, we implemented Algorithm 1 in the
default policy. For each type, TrustyMon parses the received string
and generates its signature. In the extraction phase, the signature is
stored in the database. During the monitoring phase, the signature
is compared against registered signatures to determine whether
execution should be allowed.
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TrustyMon: Practical Detection of DOM-based Cross-Site Scripting Attacks Using Trusted Types

1 trustedTypes.createPolicy('default', {

2 createHTML: function(htmlString) {

3 parsedScript = parseDOM(htmlString);
4 ast = parseAST(parsedScript);

5 sig = generateSignature(ast);

[3

7 // Extraction phase

8 saveSignature(sig, htmlString);

9

10 // Monitoring phase

11 if (matchSignature(sig)) return htmlString;
12 3,

13 createScript: function(script) {

14 ast = parseAST(script);

15 sig = generateSignature(ast);

16

17 // Extraction phase

18 saveSignature(sig, script);

19

20 // Monitoring phase

21 if (matchSignature(sig)) return script;
22 3,

23 createScriptURL: function(scriptURL) {
24 sig = generateSignature(scriptURL);
25

26 // Extraction phase

27 saveSignature(sig, scriptURL);

28

29 // Monitoring phase

30 if (matchSignature(sig)) return scriptURL;
31 }

32 | 1)

Listing 9: Pseudocode of TrustyMon’s Trusted Type policy.

In summary, defining a Trusted Types policy and implementing
sanitization logic requires significant development effort. In con-
trast, TrustyMon leverages a list of registered benign JS signatures,
reducing deployment costs by simply injecting a CSP header and
including the TrustyMon library.

C DOM-based XSS Injection Sinks

¢ HTML

— Document: write(),writeln(), execCommand(),
parseHTMLUnsafe()

— DOMParser: parseFromString()

— Element: innerHTML, outerHTML, setAttribute(),
setAttributeNS(), insertAdjacentHTML(),
setHTMLUnsafe()

- HTMLIFrameElement: srcdoc

- Range: createContextualFragment()

— ShadowRoot: innerHTML, setHTMLUnsafe()

e Script
— Element: setAttribute(), setAttributeNS()
— HTMLScriptElement: text, innerText
- Node: textContent
— Window: setInterval(), setTimeout()
- eval()
— Function(), AsyncFunction(),
GeneratorFunction(), AsyncGeneratorFunction()
— javascript:

e ScriptURL

— Element: setAttribute(), setAttributeNS()
— HTMLEmbedElement: src
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- HTMLObjectElement: data

— HTMLScriptElement: src

— Worker: Worker ()

— SharedWorker: SharedWorker ()

— WorkerGlobalScope: importScripts()

D Report Controller

Report #2

sink Type seript
Content var timeoutO = grab_data(0,placeholder’);
Reported Time. 2024-05-23 01:54:17

Reported IP

Figure 4: A web interface of Report Controller.

Report Controller allows website operators to register JS sig-
natures from selected violation reports, enabling TrustyMon to
handle false positives caused by missing benign signatures during
the extraction phase. Figure 4 shows the Report Controller web
interface. It shows a violation report along with a button to register
the reported signature as benign.
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