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ABSTRACT
The early discovery of security bugs in JavaScript (JS) engines
is crucial for protecting Internet users from adversaries abusing
zero-day vulnerabilities. Browser vendors, bug bounty hunters,
and security researchers have been eager to find such security
bugs by leveraging state-of-the-art fuzzers as well as their domain
expertise. They report a bug when observing a crash after executing
their JS test since a crash is an early indicator of a potential bug.
However, it is difficult to identify whether such a crash indeed
invokes security bugs in JS engines. Thus, unskilled bug reporters
are unable to assess the security severity of their new bugs with JS
engine crashes. Today, this classification of a reported security bug
is completely manual, depending on the verdicts from JS engine
vendors.

We investigated the feasibility of applying various machine learn-
ing classifiers to determine whether an observed crash triggers a
security bug. We designed and implemented CRScope, which clas-
sifies security and non-security bugs from given crash-dump files.
Our experimental results on 766 crash instances demonstrate that
CRScope achieved 0.85, 0.89, and 0.93 Area Under Curve (AUC)
for Chakra, V8, and SpiderMonkey crashes, respectively. CRScope
also achieved 0.84, 0.89, and 0.95 precision for Chakra, V8, and
SpiderMonkey crashes, respectively. This outperforms the previous
study and existing tools including Exploitable and AddressSanitizer .

CRScope is capable of learning domain-specific expertise from
the past verdicts on reported bugs and automatically classifying JS
engine security bugs, which helps improve the scalable classifica-
tion of security bugs.
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1 INTRODUCTION
A security bug in a popular web browser imposes a critical secu-
rity threat, affecting billions of Internet users [57]. A motivated
adversary who exploits zero- or one-day security vulnerabilities has
conducted exfiltrating sensitive information [15, 45], performing
remote code execution [11, 12, 44], and bypassing sandbox poli-
cies [13, 16, 43]. Unfortunately, today’s browsers are not safe from
zero- and one-day adversaries. According to 2018 statistics from
the Kaspersky Lab, web browsers are the second most frequently
exploited applications, accounting for one-fourth of all observed
attacks [33].

Among the components of web browsers, the JavaScript (JS) en-
gine is the core component most frequently targeted by adversaries.
The majority of users enable JS support in their browsers because
95.2% of all websites are in JavaScript [62]. The Turing-complete na-
ture of the JavaScript language also allows adversaries to compose
attack code to trigger unexpected or undefined behaviors. Further-
more, JS engines have become increasingly large and complex as
their browsers support more emerging HTML5 features. Security
bugs in such a complex and dominant application are certainly
attractive targets, which adversaries seek to exploit.

Thus, it is imperative for browser vendors to find these security
bugs as early as possible before adversaries abuse them. Today,
popular browser vendors depend on tech-savvy users, bug bounty
hunters [18, 38, 42], and security researchers [27, 61] to report
these security bugs. They also use state-of-the-art fuzzers and cloud
computing resources to find defects [20, 53].

Popular browser vendors have managed Bug Tracking Systems
(BTSs) to track reported bugs and reward bug reporters. Because the
prompt patch of a reported security bug is important, vendors ask
bug reporters to label whether their report is security-related [17,
35, 41]. Once a security bug is reported, a developer is assigned
to determine whether it is indeed a security bug. This procedure
requires domain expertise in the target browser and its engine, thus
making the procedure completely manual. If a bug reporter submits
a false positive, the engineering cost of a domain expert checking
the reported bug will be wasted. Even worse, a bug reporter may
post a security bug as a non-security bug, postponing the proper
patch and providing an opportunity for an attacker to exploit the
posted bug. Therefore, engine developers and bug reporters are in
dire need of an automated oracle that classifies security bugs.

Previous studies in the field have focused on pinpointing bug lo-
cations by analyzing crashes [5, 64, 65], determining the exploitabil-
ity of crashes [23, 60, 66], and performing natural language pro-
cessing of bug reports [2, 9, 31]. Tripathi et al. proposed training
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a binary classifier to determine whether or not a given crash due
to bugs is exploitable. Their tool, called Exniffer , approximates the
oracle which determines the exploitability of a bug by analyzing
its associated crash [60]. Off-the-shelf tools also exist, including
Exploitable andAddressSanitizer , which determine the exploitability
of a bug when it causes a target binary to crash [8, 56]. However,
no previous study has explored classifying security bugs in JS en-
gines by analyzing their crashes. In this paper, we demonstrate that
Exploitable and AddressSanitizer are unfit for classifying security
bugs and that Exniffer does not achieve high accuracy or precision
for classifying security bugs in JS engines.
Contributions. We design and implement a tool, named CRash
Scope (CRScope). Given a JS engine crash, CRScope classifieswhether
a security bug causes the crash. Consider a bug reporter with a
new JS test that causes a target engine to crash. CRScope provides
a verdict on whether this JS test has triggered a security or non-
security bug.

CRScope leverages a machine learning classifier trained on the
past verdicts of reported bugs causing the crashes of JS engines. To
train the classifier, we collected 165 JS PoCs triggering security bugs,
and 174 JS tests triggering non-security bugs from Chrome, Mozilla,
and Internet Explorer/Edge BTSs as well as GitHub repositories.
For each collected JS test, we compiled a JS engine binary, which
contained a past bug corresponding to the JS test. From the resulting
727 JS engine binaries, we prepared 766 crash instances on which
the classifier model of CRScope was trained and validated. To the
best of our knowledge, no previous study has built a ground truth
dataset for JS engine security bug classification. To support open
science and invite further research, we release our ground truth
dataset and CRScope.

We evaluated six different classifiers of CRScope, including the
Random Forest Classifier (RFC), Decision Tree Classifier (DTC),
Multinomial Naive Bayes (MNB), Logistic Regression (LR), Linear
Support Vector Classification (SVC), and Multi-layer Perceptron
Classifier (MLP) in scikit-learn [4]. For each model trained on the
crashes of Chakra, V8, and SpiderMonkey, CRScope achieved Area
Under Curves (AUCs) of 0.85, 0.89, and 0.93, respectively.We demon-
strated that CRScope outperforms Exniffer , the previous study that
addressed the classification of crash exploitability.

Prioritizing JS engine bugs is important in making sure the secu-
rity bugs get patched as soon as possible. Identifying security bugs
in the first place requires domain-specific knowledge, which often
causes false positive reports and hinders the scalable classification
of security bugs. No prior tool, however, has been able to classify
security bugs by analyzing JS engine crashes. CRScope leverages a
machine learning classifier, trained on the past verdicts made by
domain experts. CRScope is a new tool that can help bug reporters
and developers automatically classify security bugs, regardless of
whether they have domain expertise.

In summary, our contributions are as follows:
• Wedemonstrate that the current off-the-shelf tools, Exploitable
and AddressSanitizer are unfit for classifying security bugs
in JS engines.

• Webuild the first well-labeled dataset containing 165 security
and 174 non-security JS engine bugs with their JS test code
as well as their crashes. We release our dataset to support
further research at https://github.com/WSP-LAB/CRScope.

• We design, implement, and evaluate CRScope, the first tool
to classify JS engine security bugs via machine learning,
achieving AUCs of 0.85, 0.89, and 0.93 for Chakra, V8, and
SpiderMonkey crashes, respectively.

2 BACKGROUND AND MOTIVATION
2.1 Security and Non-security Bugs
A JS engine is an interpreter that executes a given JS code snip-
pet. All popular browser vendors have implemented and managed
their own JS engine: V8 for Google Chrome [22], JavaScriptCore
for Apple Safari [63], SpiderMonkey for Mozilla Firefox [48], and
Chakra for Microsoft Internet Explorer/Edge [37]. These JS en-
gines have increasingly become targets of adversaries abusing their
vulnerabilities. Vulture showed that the majority of vulnerability
fixes in Mozilla Firefox are due to JS engine components [51]. Con-
sidering the prevailing usage of JS code on the Internet and the
wide-adoption of browsers, zero-day or one-day vulnerabilities of
popular JS engines pose a critical threat. Adversaries often exploit
these vulnerabilities by luring victims to visit the webpage with
attack JS code, resulting in remote code execution.

These JS engines are lucrative targets to bug bounty hunters.
Google, Mozilla, and Microsoft offer rewards of $15,000 or even
more for the accurate reporting of these security bugs [18, 38, 42].
Furthermore, Zerodium pays ten times more for these security
bugs [67]. The monetary motives and research interests in finding
security bugs have spurred browser developers, tech-savvy users,
and intrigued researchers on to report 161 Chrome CVEs in 2018
alone [7].

To manage and track such reported bugs, each popular browser
vendor has developed a Bug Tracking System (BTS) [19, 36, 46].
These BTSs demand a specific bug report when a reporter files a new
bug. They also expect the reporter to label the found bug according
to the guidelines defined in each BTS. For instance, the Chrome
BTS requires a bug reporter to specify (1) which component a bug
belongs to, (2) whether the bug causes any crashes, and (3) whether
the bug is security-related.

This security label is important for browser vendors to prioritize
the reported security bug from other non-security bugs. It is ex-
pected that software vendors will patch any security-related bugs
within 90-days prior to public disclosure; this security label is the
sole indicator for prioritizing bug patches. However, it is possible
for a bug reporter to mislabel a security bug. Thus, browser vendors
should validate whether the filed bug is indeed a security-related
bug.

Today, this procedure is completely manual and unclear, and
it requires domain expertise, thus making the entire procedure
non-scalable and even erroneous. For instance, there were two
Chrome bug reports [10, 14] that were filed as non-security bugs.
However, it took ten months and five months, respectively to find
that they were, in fact, security related. CVE-2017-5132 was later
assigned to one of the bugs, which gave a significant time window
to exploit this publicly available vulnerability. If the bug reporters
had filed the reports as security bugs with some confidence, these
vulnerabilities would have been patched within several days.

To make the prioritizing procedure prompt and scalable, we pro-
pose CRScope, which classifies a given security bug by leveraging
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machine learning models trained on past verdicts. Our goal is to
train a model capable of classifying security bugs without requiring
domain-specific expertise.

2.2 Crash-dump
Fuzzing is a common and prevailing technique for finding JS engine
bugs [20, 27, 53, 61]. It intentionally generates invalid or unexpected
input to a program, then monitors whether or not the target pro-
gram crashes. When a bug triggers a target JS engine to crash, the
underlying OS of the JS engine creates a file, termed a crash-dump.

A crash-dump, also referred to as a core-dump, retains a recorded
process state at the time of its termination. It contains a snapshot of
main memory and CPU registers, including a program counter and
stack pointer. It also has a process terminal signal such as SIGSEGV,
SIGABRT, SIGILL, SIGFPE, or SIGQUIT. Due to its context-rich
information, a core-dump file has been used for debugging a bug
and triaging its cause. Users do not require any purpose-built tool
to obtain a crash-dump, nor does it impose any performance over-
heads.

The idea of leveraging a crash-dump to predict whether a bug
causing a crash is exploitable was explored. Exploitable and Address-
Sanitizer are public tools that analyze a crash-dump and determine
whether the bug causing the crash is exploitable. A naive approach
for tech-savvy users without domain expertise is to use these off-
the-shelf tools that infer the exploitability of a bug causing a JS
engine to crash. Exploitable [8] is a gdb extension that inspects the
state of a Linux application that has crashed; it then classifies a bug
as to how difficult it might be for an attacker to exploit. Address-
Sanitizer [56] is another tool that assigns a memory corruption
label to a given crash. Mozilla uses this label to classify exploitable
crash reports [47] and ClusterFuzz from Google leverages this label
to rate the security severity of a found crash. When the label is
Bad-cast, or Heap-use-after-free, the found crash is classified as
a high severity bug [21]. Note that both Exploitable and Address-
Sanitizer are designed to gauge the exploitability of a given crash,
not to classify whether a given crash is security-related. We thus
conducted experiments to measure the efficacy of the two tools in
predicting security bugs. Section 3 and Section 6.1 describe in detail
our experiments on 339 bugs and their 766 crashes.

In Section 6.1, we demonstrate that Exploitable achieved 0.48
precision, producing 85% false positives. If a browser vendor uses
Exploitable to prioritize security bugs, the engineering cost of vet-
ting false positives would be unnecessarily wasted. Also, Address-
Sanitizer achieved 0.76 precision and 0.60 recall, producing an un-
acceptable number of false negatives. 190 crashes (42%) triggered
security bugs that AddressSanitizer was unable to detect. These
experimental results demonstrate that neither tool is fit to classify
security bugs in JS engines.

To address the shortcomings of these off-the-shelf tools, we de-
sign and implement CRScope leveraging machine learning models
to classify security bugs in JS engines. Anyone, including techni-
cally novice users who are motivated to find security bugs in JS
engines, can use state-of-the-art fuzzers, find a JS test causing a JS
engine crash, and claim the security bug with confidence by lever-
aging CRScope. Engine vendors also benefit from automatically
classifying reported bugs to filter spurious bug reports.

Table 1: Ground truth data for JS engines

PoC code Crash instances

JS engines Security Non-
Security All Security Non-

Security All

Chakra 69 35 104 126 53 179
V8 50 41 91 147 115 262

SpiderMonkey 46 98 144 95 230 325
All 165 174 339 368 398 766

3 DATASET
CRScope is a binary classifier that assigns either a “security bug” or
“non-security bug” label to a given JS engine crash-dump. To train
this classifier, we built the ground truth dataset, a collection of JS
engine crash-dump files that were manually classified as security
and non-security bugs. We collected these past classification ver-
dicts from BTSs and GitHub repositories for V8, SpiderMonkey, and
Chakra.
Collecting PoCs. For security bugs, we collected CVEs with PoC
code reported between 2011 and 2018. From each Chakra release
note enlisted in the GitHub repository, we collected patched CVEs [58].
From the Chrome BTS, we also collected bug reports, each of which
was assigned with a CVE or rewarded fromGoogle [19]. For Mozilla,
we leveraged a list of known security vulnerabilities and collected
CVEs of SpiderMonkey [49]. We then searched PoC code for the
collected CVEs from patch commits, bug reports, and websites that
have been archiving exploits [26, 55].

For non-security bugs, we collected test cases that did not have
security-related labels. For each Chakra bug, we read its correspond-
ing GitHub issue and selected crashing bugs triggering non-security
bugs. In the case of V8 and SpiderMonkey, we collected bug reports
with PoC code, but without assigned CVEs or rewards.
Building JS engine binaries. There is a remaining challenge. It
is to find the correct version of a target JS engine for each PoC
triggering a security or non-security bug. Our objective is to prepare
the engine binary which generates a crash-dump at the time the
bug is reported. Unfortunately, we observed that a large number of
bug reports missed information on their target JS engine version
where the bugs were found. For each bug report without an explicit
version, when we knew its patch commit or patch date, we retrieved
the JS engine repository for which the last commit was ahead of the
patch date. When we could not even obtain the patch information,
we restored the repository for which the latest commit date was
ahead of the date when the report was filed. For instance, if the
bug report was filed on January 15, 2019, we retrieved the latest
repository whose commit occurred prior to January 15, 2019.

Given a labeled PoC code snippet, we prepared JS engine binaries
to produce crash-dumps from which CRScope extracts features.
Note that each JS engine supports both ia32 and x64 architectures
except for Chakra; Chakra only supports x64 architecture. Each JS
engine also provides debug and release modes. Therefore, each test
for a target JS engine can have up to four corresponding binaries.

Table 1 summarizes our ground truth dataset. We collected a
total of 766 crash instances by running 339 PoCs on V8, Spider-
Monkey, and Chakra engines for each architecture and each mode.
165 security bugs (69 in Chakra, 50 in V8, and 46 in SpiderMonkey
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Table 2: List of features used in CRScope

Feature Name Preprocessed Feature Extraction

JS engine name ✗ LabelEncoder
Architecture type ✗ LabelEncoder
Compile mode ✗ LabelEncoder
Signal type ✗ LabelEncoder
Crash type ✗ LabelEncoder

Crashing instruction ✗ TfidfVectorizer, CountVectorizer
Crashing function ✓ TfidfVectorizer, CountVectorizer

Backtrace ✓ TfidfVectorizer, CountVectorizer

PoCs) caused 368 JS engine binaries to crash. The others are caused
by 174 non-security bugs. Whereas the number of V8 PoCs is the
smallest, the number of Chakra crash instances is smaller than the
others. It is because the number of Chakra engine binaries is smaller
than others due to not supporting the ia32 architecture.
Difficulties in building the ground truth. We emphasize that
preparing the ground truth data for major JS engines is an arduous
task. There was no previous study or public project involving the
classification of JS engine crashes. There are also a limited number
of CVEs with publicly available PoC code, thus hindering the col-
lection of training instances. Furthermore, to collect crashes from
the binary when the report was filed, we carefully read every bug
report and validated whether the corresponding PoC code worked.

We compiled 727 binary instances, which accounted for 1200GB
(1.2TB). This task was also challenging because compiling old ver-
sions of JS engines often requires the usage of deprecated libraries
and outdated OS supports. In some instances, building the old ver-
sions of JS engines required investigation and non-trivial engineer-
ing costs because themethod of building each JS engine has changed
over time. If a rolled back repository contained a compilation error,
we had to manually fix this error by looking through commit logs.
Compiling 727 binaries took a long time and required significant
computing resources. We did not intend to miss any bugs with PoC
code resulting in a target JS engine crash. Three graduate students
invested nine months in identifying and validating 339 bugs and
their bug reports from Chrome, Mozilla, and Chakra BTSs. To sup-
port open science and further research, we release the ground truth
data and source code at https://github.com/WSP-LAB/CRScope.

4 METHODOLOGY
This section describes how we design and implement CRScope.
Section 4.1 explains each feature that CRScope extracts from a
crash-dump and their preprocessing. Section 4.2 describes six clas-
sification models that we evaluate to select a proper model for
CRScope.

4.1 Extracting Features
Given a crash-dump file, CRScope extracts eight different feature
types. Table 2 summarizes the extracted features. The first and
second columns represent their types and whether CRScope pre-
processed them, respectively. The last column indicates the method
of vectorizing each feature. We applied three different vectorizing
methods: LabelEncoder, CountVectorizer, and TfidfVectorizer [4].

LabelEncoder encodes a feature value into a number which varies
from zero to the number of its unique instances minus one. For
the feature of JS engine name, Chakra, V8, and SpiderMonkey are
encoded into 0, 1, and 2, respectively.

CountVectorizer converts a feature consisting of various elements
into the vector of element frequencies over the dataset. Note that
crashing instruction feature has many vocabularies, e.g., opcode and
operand. After conducting the CountVectorizer extraction, the crash-
ing instruction feature becomes a sparse vector with the counts for
each vocabulary contained in the crashing instruction.

TfidfVectorizer operates similar to CountVectorizer except for
being able to filter out elements with frequencies that are too low
or too high, by computing the Term Frequency - Inverse Document
Frequency (TF-IDF) value for each element [30].

Before applying the CountVectorizer and TfidfVectorizer meth-
ods, we extracted n-gram tokens from each crashing instruction,
crashing function, and backtrace while varying n from one to five.
We encoded these tokens into feature vectors, thus capturing the
relationships between operations, operands, and call sequences.

We applied LabelEncoder to encode the top five features in Table 2
and vectorized the bottom three features using TfidfVectorizer and
CountVectorizer. All of the encoded vectors above are concatenated
into one large vector for each crash instance. The lengths of the
vectors generated using the Chakra, V8, and SpiderMonkey datasets
are approximately 18,000, 24,000, and 30,000, respectively. However,
significant features are only subsets of them, and an unnecessarily
large size of vector dimension hinders the correct classification of
crash instances [68].

We reduced the feature vector dimension by conducting two
preprocessing steps. Hall et al. stated that a good feature subset
should contain features uncorrelated with (not predictive of) each
other [25], which guided our correlation-based feature selection
process. First, we computed a Pearson correlation coefficient [3]
for every feature pair. For each feature, we removed highly corre-
lated features the coefficients of which were over 0.9 because these
features are redundant in performing classifications [25]. We then
selected 100 features after conducting SelectKBest from [4], which
internally performs a chi-square test. It computes chi-squared sta-
tistics between each feature and class and eliminates features that
are likely to be irrelevant for classification.

The followings describe the details of our extraction method for
each feature type.
JS engine name. Each browser vendor could have subtle differ-
ences in the criteria for determining a security bug. We thus provide
a target engine name to a model and let the model pick this feature
or not while training. Its feature value is among Chakra, V8, and
SpiderMonkey.
Architecture type and compile mode. A JS engine has up to
four different binaries for the supporting architectures and com-
pile modes (See Section 3). Since crash-dumps and other extracted
features differ among these four different binaries, we feed a target
model with ia32 and x64 for the architecture type as well as release
and debug for the compile mode.
Signal type. When a process is abnormally terminated, it receives
a terminal signal, then crashes. This terminal signal depends on the
root cause of the crash. For instance, SIGSEGV is a segmentation
violation signal which informs that a process attempted to access a
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not-allowed memory region. SIGABRT is an abort signal indicat-
ing that the process is unable to run further because of asserting
statements or other causes. The feature value is either SIGSEGV,
SIGILL, SIGABRT, or SIGFPE.
Crash type. Exploitable is a gdb plugin that determines the ex-
ploitability of a crash-dump file. It also classifies a crash type. There
exist 22 different crash types such as ReturnAv, BranchAv,DestAvN-
earNull, and BadInstruction. Each crash type represents an instance
where access violations occurred or means that the current crashing
instruction is illegal. Although we use Exploitable, it is trivial to
compute this label by analyzing a crash-dump without it.
Crashing instruction. CRScope extracts the instruction at which
the crash occurred. This instruction provides useful information
about the crash cause. If a crashing instruction is a read or write
operation, the main cause of the crash could be due to the reading
or writing of an invalid memory, respectively.

An instruction consists of an opcode and its operands. CRScope
extracts n-grams (from one to five) from this instruction. For ex-
ample, from the mov eax, ebx instruction, CRScope extracts mov,
eax, ebx, mov eax, eax ebx, and mov eax ebx. Each n-gram token
becomes a feature element, the value of which is its frequency over
the entire dataset. That is, CRScope extracts a vector for which the
element corresponds to an n-gram token frequency for each of the
TfidfVectorizer and CountVectorizer algorithms.
Crashing function. The function at which the crash occurred is
the top frame of the stack trace. It is the actual function where the
crash occurred. Schroter et al. found that 40% of bugs were fixed
in these top functions [54], and Wu et al. located 50.6% of crashing
faults by examining the top function [64]. We thus assume that a
crashing function, the top of a stack trace, is closely correlated with
crashes. We feed this feature into the CRScope classifiers. CRScope
also preprocesses this feature by transforming a function name into
a sequence of its namespace, class, and member function name,
excluding arguments and templates. It then extracts n-gram (from
one to five) tokens from this sequence. Our intention behind this
scheme is to capture the semantic that appeared in word tokens of
function names.
Backtrace. A backtrace (also called stack trace) is an ordered list
of callees or active stack frames when the crash occurs. This stack
trace is one of the most useful pieces of information when de-
velopers want to identify the root cause of the crash by tracking
execution flows. In practice, many software vendors send these
backtraces from client crashes to triage the problems. Schroter et al.
demonstrated that bug reports with backtraces had got resolved sig-
nificantly sooner than other bug reports [54]. The intuition behind
collecting this feature is that when a crash occurs, any callee in the
stack trace is highly correlated with security bugs. We expect that
the function name itself contains a semantic of its internal logic,
which hints at a model in performing the classification.

CRScope preprocesses the extracted backtrace features. For a
given backtrace, CRScope only extracts the sequence of callees,
each of which only contains a function name excluding other parts
such as namespaces and classes. It then extracts n-gram (from one
to five) tokens, each of which becomes a callee sequence with length
n.

Table 3: Hyperparameters of each model explored via grid
search

Models Parameters Values

MNB alpha 0.01, 0.1, 1, 10, 100

DTC

max_features sqrt, auto, log2, None
splitter best, random
criterion gini, entropy

max_depth None, 2, 5, 10, 20, 50, 100, 500, 1000

RFC

max_features auto, sqrt, log2, None
n_estimators 10, 50, 100
warm_start False, True
criteriton gini, entropy
max_depth 2, 5, 10, 20, 50, 100

SVC

penalty l1, l2
loss hinge, squared_hinge
dual True, False
tol 1e-4, 1e-6, 1e-8, 1e-10, 1e-20
C 1, 10, 100, 1000, 10000

max_iter 100, 1000, 10000, 100000
multi_class ovr, crammer_singer

LR

penalty l1, l2
dual True, False
tol 1e-4, 1e-6, 1e-8, 1e-10
C 1, 10, 100, 1000

solver liblinear, newton-cg, lbfgs, sag
max_iter 100, 1000, 10000, 100000

warm_start False, True

MLP

hidden_layer_sizes (100, ), (100, 25, )
activation identity, logistic, tanh, relu
solver lbfgs, sgd, adam
alpha 1e-4, 1e-2, 1, 100

learning_rate constant, invscaling, adaptive
tol 1e-4, 1e-6, 1e-8, 1e-10, 1e-20

epsilon 1e-1, 1e-2, 1e-3, 1e-5, 1e-10

4.2 Classification models
Using features extracted as described in Section 4.1, we evaluated
Multinomial Naive Bayes (MNB), Decision Tree Classifier (DTC),
Random Forest Classifier (RFC), Linear Support Vector Classifica-
tion (SVC), Logistic Regression (LR), and Multi-layer Perceptron
Classifier (MLP) machine learning models in the scikit-learn pack-
age [4]. Our evaluation goal is to find a model with the best perfor-
mance for CRScope in classifying security bugs.

Each model requires different hyperparameters, thus making
hyperparameter tuning imperative because they affect evaluation
results. We thus conducted the grid search in [4] to find the best
hyperparameters for the models referred to above. The employed
grid search is an accuracy-guided exhaustive search technique,
thus selecting the set of hyperparameters that produces the highest
accuracy.

Table 3 shows hyperparameters that we explored by conducting
the grid search. For each model, hyperparameters in the second
column are determined by exhaustively searching over specified
values in the third column. We used scikit-learn default values
for other parameters. For the details of each hyperparameter, we
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Table 4: Example of the grid search for DTC model

Parameters Accuracy(1) (2) (3) (4) (5)

... ...
log2 10 True gini 2 0.719 ± 0.095
log2 10 True gini 5 0.724 ± 0.060
log2 10 True gini 10 0.737 ± 0.041
log2 10 True gini 20 0.742 ± 0.123
log2 10 True gini 50 0.77 ± 0.118
auto 10 True gini 100 0.76 ± 0.0093
sqrt 10 True gini 100 0.77 ± 0.077
log2 10 False gini 100 0.783 ± 0.101
log2 10 True gini 100 0.788 ± 0.121
log2 50 True gini 100 0.77 ± 0.077
log2 100 True gini 100 0.77 ± 0.077
log2 500 True gini 100 0.765 ± 0.075
log2 1000 True gini 100 0.765 ± 0.075
log2 5000 True gini 100 0.765 ± 0.075
log2 10000 True gini 100 0.765 ± 0.075
None 10 True gini 100 0.742 ± 0.029
log2 10 True gini 500 0.756 ± 0.085
log2 10 True gini 1000 0.77 ± 0.056
log2 10 True entropy 100 0.747 ± 0.068

... ...

(1) max_features (2) n_estimators (3) warm_start (4) criterions (5) max_depth

refer the interested readers to the technical documentation for the
scikit-learn package [4] for more details.

Table 4 illustrates an example of the grid search result conducted
on a DTC model. The grid search generates all possible combina-
tions for a given set of hyperparameter values and then calculates
the accuracy of the model trained with the corresponding parame-
ters. Each column in the first five columns represents a parameter,
and the last column is the accuracy. Each row shows each parame-
ter candidate. In Table 4, the candidate [loд2, 10,True,дini, 100] in
bold produces the best average accuracy. As such, each parameter
of CRScope is determined by the grid search, producing the best
performance.

5 EXPERIMENTAL DESIGN
We evaluated CRScope by answering three key questions:

• RQ1: How effective are Exploitable and AddressSanitizer in
classifying security bugs from given crash-dumps?

• RQ2: Is CRScope effective in classifying security bugs from
given crash-dumps? If so, howmuchmore accurate is CRScope
in comparison to the previous tools?

• RQ3: What feature types are most significant in classifying
security bugs?

To answer these questions, we evaluated six different classifiers
trained on features that CRScope extracts. The following sections
explain our cross-validation methodology and the method for han-
dling imbalanced training instances.

5.1 Cross-Validation
Our evaluation goal is to check whether a CRScope model can be
trained on past bugs and their crash-dump files, and whether it is
able to classify an unforeseen crash-dump. All browser vendors
accept a security bug report only if the reported bug exists in the
latest versions of their browsers or JS engines. Conservatively, a

Figure 1: Four-fold time series cross-validation in CRScope

model should be capable of classifying a crash on the latest JS
engines, which the model has not observed at all.

Cross-validation is a prevalent technique for evaluating a ma-
chine learning model. A standard n-fold cross-validation shuf-
fles crash instances to create training and test sets so that crash
instances on a later JS engine version will be used for predict-
ing a past bug, which was reported ahead of the release of the
JS engine. This is a common pitfall of the previous research on
hardware-counter based malware detection via machine learning,
as Zhou et al. pointed out [68]. That is, a standard n-fold cross-
validation is not applicable for evaluating CRScope because our
dataset is by nature a time series.

We designed our evaluation to check whether CRScope is able to
classify future security bugs.We sorted all security and non-security
bugs by their commit dates, which we used in their target binaries.
We then arranged their crash instances in ascending order and
divided these crashes into five bins so that each bin had the same
number of crash instances. From those five bins, we conducted the
4-fold cross-validation. The first cross-validation used the first and
second bins as the training and test sets, respectively. Its successive
cross-validation used all bins from the previous test as the training
set and used the next bin as the testing set, as shown in Figure 1.
Specifically, with five bins {1, 2, 3, 4, 5}, we leveraged four cross-
validation sets of {Traininд : 1 /Testinд : 2}, {1, 2 / 3}, {1, 2, 3 / 4},
and {1, 2, 3, 4 / 5}.

5.2 Balancing instances
Balancing security-related and non-security crashes is vital to avoid-
ing the classification bias towards a majority class [68]. When
building and evaluating a model on imbalanced data such that the
number of instances per each class is not equally distributed, clas-
sifier models are more likely to classify a new observation to the
majority class because the probability of instances belonging to the
majority class is significantly high.

Tripathi et al. evaluated Support Vector Machine (SVM) mod-
els in classifying exploitable crashes [60]. However, they used a
total of 523 crashes with 166 exploitable and 357 non-exploitable
samples. They trained and evaluated their model using this imbal-
anced dataset. Thus, their evaluation results were biased towards
non-exploitable crashes.

We also have an imbalanced dataset. To address this problem,
it is feasible to increase the frequency of the minority class, or
to decrease the frequency of the majority class. To avoid miss-
ing any crash instances due to under-sampling, we performed
over-sampling to balance security and non-security crashes, when
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Table 5: Evaluation of Exploitable

Our verdict Exploitable
Crash instances

Security Not-security

Exploitable
exploitable 269 (73.10%) 197 (49.50%)

probably-exploitable 40 (10.87%) 140 (35.18%)

Not-Exploitable probably-not-exploitable 15 (4.08%) 52 (13.07%)

Ignored unknown 44 (11.96%) 9 (2.26%)

preparing the cross-validation set. We applied the random over-
sampling algorithm [34], which duplicates random records from
the minority class.

6 EXPERIMENTAL EVALUATION
6.1 Performance of Exploitable and ASan (RQ1)
Exploitable. Exploitable [8] is a gdb extension. It analyzes the cur-
rent execution state of a target process when the gdb pauses the
crashing process with a crash-dump. It then predicts the exploitabil-
ity of this crash-dump by leveraging pre-defined heuristics. Each
label becomes the sole factor in determining the exploitability of a
target crash. This determination is classified as either exploitable,
probably-exploitable, probably-not-exploitable, or unknown.

Table 5 describes the evaluation results of Exploitable on 339
PoCs and their 766 crashes. The second column represents a label
that Exploitable predicts. The third and fourth columns represent
the true labels of tested crashes. The first column shows our inter-
pretation of the Exploitable reports. We ignored the unknown label
for Exploitable because we were unable to make a determination
with the information provided. Hence, we conservatively excluded
these 53 crash instances when computing the precision, recall, and
accuracy of Exploitable.

Approximately 84% of security crashes were labeled exploitable
or probably-exploitable, which we considered to be security-related.
That is, Exploitable achieved 0.95 recall for security bugs. However,
the resulting accuracy was 0.51 and the precision was 0.48 due
to false positives and false negatives, which are marked bold in
the table; 85% of non-security bugs were classified as exploitable
(false positives), and 4% of security bugs were classified as not-
exploitable (false negatives). If a browser vendor used Exploitable to
prioritize security bugs, the engineering cost of vetting these false
positives would be wasted. Furthermore, there still exist 53 crashes
that Exploitable is unable to classify.
AddressSanitizer. AddressSanitizer [56] is an open-source mem-
ory error detector fromGoogle, which is designed to detect memory-
related bugs such as use-after-free and buffer overflows. It is an
instrumentation tool, which requires a target binary to compile via
clang with the -fsanitize=address option. After an instrumented JS
engine crashes when running a given PoC, AddressSanitizer reports
a memory-error class. Note that ClusterFuzz has used this class as
an indicator for classifying new browser bugs [20].

Table 6 shows our evaluation results for AddressSanitizer on the
collected PoCs and their crashes. The second column is a memory-
error class reported by AddressSanitizer . For the first column, we

Table 6: Evaluation of AddressSanitizer

Our verdict AddressSanitizer
Crash instances

Security Not-security

Exploitable

stack-buffer-overflow 15 (6.47%) 1 (0.47%)
heap-use-after-free 4 (1.72%) 4 (1.87%)

stack-buffer-underflow 4 (1.72%) 0 (0.00%)
invalid-free 1 (0.43%) 2 (0.93%)

stack-use-after-return 1 (0.43%) 0 (0.00%)
use-after-poison 0 (0.00%) 1 (0.47%)

Not-Exploitable

alloc-dealloc-mismatch 16 (6.90%) 10 (4.67%)
memory-leaks 1 (0.43%) 3 (1.40%)
stack-overflow 0 (0.00%) 5 (2.34%)

Ignored
invalid-memory-access 148 (63.79%) 143 (66.82%)

not-segv 42 (18.10%) 45 (21.03%)

clustered the reported memory-error classes into three groups: Ex-
ploitable, Not-exploitable, and Ignored. For this clustering, we lever-
aged the criteria from ClusterFuzz [21]. It classifies the severity of
a bug when AddressSanitizer emits one of the following labels: Bad-
cast, Heap-buffer-overflow, Heap-double-free, Heap-use-after-free,
Stack-buffer-overflow, Stack-use-after-return, or Use-after-poison.
Otherwise, we referenced the Common Weakness Enumeration
(CWE) list [39] to decide whether each memory-error class was ex-
ploitable. For instance, CWE-762 indicates alloc-dealloc-mismatch
and its official CWE description states that exploiting this bug is
rarely likely to cause unauthorized code execution [40]. We ignored
378 crash instances with the invalid-memory-access and not-segv
labels when computing the precision, recall, accuracy, and false neg-
atives of AddressSanitizer because we were unable to make further
decisions whether or not they are security-related.

As Table 6 shows, AddressSanitizer achieved 0.76 precision. How-
ever, the accuracy is 0.63 and the recall is 0.60, thus producing 40%
of false negatives. Also, AddressSanitizer was unable to detect 190 of
the crashes (42%) triggering security bugs. It becomes evident that
the tool is designed for detecting general memory errors, rather
than for classifying security bugs in JS engines.

6.2 CRScope Performance (RQ2)
We evaluated CRScope on crash-dump files from Chakra, V8, and
SpiderMonkey. Table 7 summarizes the averaged accuracy, pre-
cision, recall, F-1 score, and AUC for the model that appears in
the “Selected model” row. We selected the model with the highest
AUC among six classifiers. We also evaluated each of the classifi-
cation models, which were trained and validated on crash-dumps
only from each JS engine listed between the third and sixth head
columns. “All” represents the evaluation result of the model with
crash instances from all three JS engines.

Table 7 demonstrates that CRScope is effective in classifying
security crashes of JS engines. For SpiderMonkey crashes, the DTC
model of CRScope achieved 0.93 accuracy, 0.95 precision, 0.92 recall,
0.93 F1-score, and 0.93 AUC; this showed better performance than
any of the other models. Figure 2 also shows the ROC curves of
the six models for each JS engine. In general, CRScope is good at
classifying security bugs when its model is trained on crash-dump
files only from each JS engine. As Section 6.3 describes, the most
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Table 7: Evaluation of CRScope with oversampled crash instances.

Target system JS engines Chakra V8 SpiderMonkey All

CRScope

Selected model RFC RFC DTC RFC

Accuracy 0.85 ± 0.04 0.89 ± 0.04 0.93 ± 0.04 0.88 ± 0.05
Precision 0.84 ± 0.06 0.89 ± 0.08 0.95 ± 0.03 0.89 ± 0.04
Recall 0.87 ± 0.03 0.90 ± 0.02 0.92 ± 0.07 0.86 ± 0.07

F1-Score 0.85 ± 0.04 0.89 ± 0.04 0.93 ± 0.04 0.87 ± 0.05
AUC 0.85 ± 0.04 0.89 ± 0.04 0.93 ± 0.03 0.88 ± 0.05

Exniffer

Selected model RFC RFC MLP RFC

Accuracy 0.69 ± 0.09 0.86 ± 0.02 0.77 ± 0.03 0.77 ± 0.05
Precision 0.64 ± 0.08 0.81 ± 0.04 0.76 ± 0.02 0.74 ± 0.05
Recall 0.83 ± 0.06 0.94 ± 0.06 0.78 ± 0.09 0.83 ± 0.06

F1-Score 0.72 ± 0.07 0.87 ± 0.02 0.77 ± 0.04 0.78 ± 0.04
AUC 0.69 ± 0.08 0.86 ± 0.02 0.77 ± 0.03 0.77 ± 0.05

CRScope
+ Exniffer

Selected model RFC DTC DTC DTC

Accuracy 0.81 ± 0.08 0.91 ± 0.05 0.93 ± 0.02 0.88 ± 0.03
Precision 0.80 ± 0.08 0.91 ± 0.05 0.95 ± 0.04 0.90 ± 0.05
Recall 0.84 ± 0.09 0.87 ± 0.08 0.92 ± 0.06 0.87 ± 0.02

F1-Score 0.82 ± 0.08 0.90 ± 0.06 0.93 ± 0.02 0.88 ± 0.03
AUC 0.81 ± 0.08 0.91 ± 0.05 0.93 ± 0.02 0.88 ± 0.03
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Figure 2: ROC curves for CRScope with oversampled crash instances

significant features included backtraces and function names, each
of which differs among JS engines.

We also compared our experimental results for themodels trained
on the features addressed in Exniffer [60]. Exniffer is a machine
learning based tool that predicts the exploitability of crashes using
crash-dump files and the last branch record (LBR) register. This
work used a total of 51 static and dynamic features from crash-
dumps and the LBR register, respectively. Out of the 51 features,
there were 44 static features, which consisted of whether the back-
trace was corrupted; whether the instruction pointer, base pointer,
and stack pointer referenced valid memories; the type of access
violation; the number of operands; each operand type; and the
type of signal. When implementing Exniffer , we used static (not dy-
namic) features to leverage only crash-dump files. We excluded LBR
information because the extraction of this dynamic information
from complex software, such as JS engines, is difficult for normal
users who lack security expertise; this issue contradicts our goal.
Furthermore, Tripathi et al. demonstrated that the LBR features

were not significant when Exniffer classified exploitability; the LBR
features did not appear in the top five significant features [60].

Table 7 shows that CRScope achieves a better performance than
Exniffer in all cases. It demonstrates that the Exniffer features are
not more effective than ours in determining security bugs. Interest-
ingly, when combining the features from CRScope and Exniffer , the
performance in all cases, except Chakra’s one, is boosted. This result
clearly demonstrates that CRScope features significantly contribute
to identifying security bugs, and Exniffer features are complemen-
tary, partly contributing to CRScope performance improvement.

6.3 Feature Importance (RQ3)
Table 8 shows the list of the top five features, ranked by their signifi-
cance in each selected model, which produced the best performance.
Some listed features have a square bracket ([ ]), which represents
the feature type and the vectorization method used to extract the
feature. The left-hand element of a colon in the bracket is a feature
type. We abbreviate Crashing instruction, Crashing function, and

Session 9: Fuzzing AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand

653



Table 8: Most significant features in the CRScope models

CRScope CRScope + Exniffer

JS engines Top-5 features JS engines Top-5 features

Chakra
(RFC)

1. [b:c] js

Chakra
(RFC)

1. [b:c] js
2. [b:t] js profilinghelpers 2. [b:t] js profilinghelpers
3. [b:c] interpreterstackframe 3. [i:t] rbx
4. [i:t] rbx 4. [f:t] js sourcetextmodulerecord
5. [b:t] javascriptproxy 5. [b:t] javascriptproxy

V8
(RFC)

1. [b:t] abort

V8
(DTC)

1. signal
2. signal 2. [f:c] accessors
3. [i:t] ptr 3. [b:t] internal object
4. [i:t] ud2 4. [b:c] compile
5. [f:t] v8 5. [F13] Memory operand is Null

Spider
Monkey
(DTC)

1. [b:c] runfile
Spider
Monkey
(DTC)

1. [f:t] js
2. [b:c] jit 2. [F34] Resume Flag
3. [b:c] jsstring 3. [b:c] jit
4. [f:t] js 4. [b:c] runfile
5. [i:t] 0x1cb 5. [b:c] gc

All
(RFC)

1. [f:t] execute executescript

All
(DTC)

1. [f:t] js
2. [f:t] js 2. [F20] Operand is register
3. [f:c] internal 3. [b:c] internal
4. crash_type 4. crash_type
5. [b:t] js profilinghelpers 5. [i:t] qword

Backtrace as “i,” “f,” and “b,” respectively. The right-hand element
indicates either CountVectorizer or TfidfVectorizer, which are ab-
breviated as “c,” and “t,” respectively. For instance, [i:t] ptr means
that its corresponding feature value is ptr that is extracted from a
crashing instruction by applying the TfidfVectorizer method. Other
features without the square bracket represent a feature type ex-
tracted via LabelEncoder, such as signal and crash_type. The other
features starting with “F” in a square bracket represent features
from Exniffer . The number next to the “F” represents a feature index
used in [60].
Chakra. The third row shows the top five significant features for
the Chakra classifier models. When considering only CRScope fea-
tures, most of the significant features, except for the fourth top
feature, were namespace and class names extracted from back-
traces. The first, second, third, and fifth top features represent the
Js namespace, Js::ProfilingHelpers class, Js::InterpreterStackFrame
class, and Js::JavascriptProxy class, respectively. We investigated
the Chakra dataset and found that 88.1% of crash instances with the
Js::ProfilingHelpers feature and 73.8% with the Js::InterpreterStack-
Frame feature were security bugs. On the other hand, all crash
instances with the Js::JavascriptProxy feature were non-security
bugs, thus enabling the classifier to assign a non-security bug for
these crash instances. It is apparent that the classes appearing in a
backtrace significantly contribute to the CRScope classification of
security bugs.

The fourth feature is the rbx register extracted from the crash-
ing instructions. We investigated the usage of rbx in our Chakra
dataset. This register stored a data value (e.g., mov rbx, QWORD
PTR [r12]) or referenced a memory address (e.g.,mov rax, QWORD
PTR [rbx+0x8]). Interestingly, when the rbx register references a
non-null memory address, such crashes were classified as security-
related. This result shows that the usage of the rbx register at a

crashing instruction plays an important role in security bug classi-
fication.
V8. The top feature of the V8 model is abort, which is a 1-gram
token of the v8::internal::OS::Abort or v8::base::OS::Abort functions
extracted from backtraces. These functions are primarily utilized
when the engine detects an error and then terminates by itself.
In our V8 dataset, 68.6% of crash instances with the abort feature
were non-security bugs. Interestingly, however, crash instances
with abort feature had SIGILL (86.1%) or SIGABRT (13.9%) signals,
and 73.7% of crash instances with SIGILL were non-security bugs,
while 63.2% of crash instances with SIGABRT were security bugs.
Therefore, this top feature contributes to CRScope identifying both
security and non-security bugs.

The second top feature is signal. In our V8 dataset, a signal is one
of SIGSEGV, SIGABRT, SIGILL, and SIGFPE. About 87.4% of crash
instances with the SIGSEGV feature and 63.2% of crash instances
with the SIGABRT feature were security bugs. On the other hand,
all crash instances with the SIGFPE feature and 73.7% of crash
instances with the SIGILL feature were non-security bugs. Hence,
the former and latter signals affect the capability of CRScope to
classify security bugs and non-security bugs, respectively.

The third and fourth top features were extracted from crashing
instruction. Any instructions involving ptr read or write from/to
main memory addresses. In our V8 dataset, 93% of crash instances
with ptr had the SIGSEGV signal, which indicates a memory bug.
Approximately 85.9% of crash instances with the ptr feature were
security-related. The ud2 instruction means an undefined instruc-
tion and is closely related to the abort functions and SIGILL signal
because all crash instances with the ud2 feature had the SIGILL
signal and backtraces involving the abort functions. Therefore, it
had the same percentage of non-security bugs with SIGILL crash
instances (i.e., 73.7%). Among crashing instructions, ptr and ud2
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function f() {

({a = () => {

let arguments;

}} = 1);

arguments.x;

}

f();

Listing 1: Chakra PoC code that invokes the security bug of
CVE-2017-8670

var proxy = new Proxy(function (){}, {});

class C extends proxy {

constructor () {

super(Object.setPrototypeOf(C, function (){}))
}

}

Reflect.construct(C, [], proxy);

Listing 2: Chakra PoC code that invokes a non-security bug

contributed to CRScope being able to identify security bugs and
non-security bugs, respectively.
SpiderMonkey. The runfile feature, the top feature for SpiderMon-
key, indicates the partial sequence of a backtrace,

RunFile − Process − ProcessArдs − Shell −main,

which locates at the bottom of the backtrace. In our SpiderMonkey
dataset, 83.1% of crash instances with that backtrace were non-
security bugs. However, we concluded that this feature has no
discriminative capability since the call sequence including runfile
is a common method for executing JS tests, which does not have
any security implication.

The second and third top features represent the js::jit and JSString
classes, respectively. We analyzed the usage of those classes in our
dataset. We found that the more the js::jit class appears in a back-
trace, the more likely its crash instance is security-related. The rate
of security bugs among the crash instances for which the number of
the js::jit class appearing in the backtrace is greater than zero was
45.3%. This rate grows as the number of js::jit occurrences increases;
the security bug rate when considering only backtraces for which
the number of js::jit occurrences was greater than two increased to
71.4%. Further, the rate went up to 77.3% when the occurrence was
greater than three, and 82.4% when the occurrence was greater than
four. For the crashes with backtraces involving JSString, we ob-
served two kinds of backtraces; JSString::isRope - JSString::isLinear
- JSString::ensureLinear and JSString::dumpRepresentation. Inter-
estingly, all crash instances with the former backtrace were non-
security bugs, while the latter were security bugs.

The fifth top feature is the 0x1cb value extracted from crashing
instruction. In our SpiderMonkey dataset, there were four crashing
instruction instances involving 0x1cb, and they shared the same
instruction semantic: mov DWORD PTR [eax], 0x1cb. This opera-
tion attempts to write 0x1cb to a memory location referenced by a
register, resulting in a write violation when the referenced address
is not accessible or allocated. We observed that all of these instances
were security bugs.
Exniffer. When covering both CRScope and Exniffer features, our
features showed up in the top five significant features in most cases.

It indicates that CRScope features are more adequate in terms of
labeling security bugs. Interestingly, when the AUC of a model
covering both features increased, an Exniffer feature is included in
the top five features. For the V8model, the AUC is boosted from 0.89
to 0.91, and the top fifth feature includes an Exniffer feature, F13:
Memory operand is Null. Also, the AUC of the SpiderMonkeymodel
is slightly boosted from 0.93±0.03 to 0.93±0.02, and the top second
feature includes F34: Resume Flag. Meanwhile, in Chakra, the AUC
of the combination system is not boosted, and the top five features
consist of only CRScope features. This result demonstrates that
Exniffer provides complementary features for CRScope to improve.
Case Study. Listings 1 and 2 show Chakra PoC code snippets that
invoke a security bug and a non-security bug, respectively. The
following table shows two feature vectors representing two Chakra
crash instances obtained by executing Listings 1 and 2. Each row
represents one crash instance with two vector representations; the
first one is from CRScope and the other one is encoded according
to the method used by Exniffer .

CRScope Exniffer
6, 0.101488, 4, 0., 0, ... 1, 2, 3, 4, 6, 8, 9, 5, 11, 16, 20, 18, 19, 23, 24, 27, 29, 34, 42
4, 0., 4, 0.243038, 0, ... 1, 2, 3, 4, 6, 8, 9, 5, 11, 16, 20, 18, 19, 23, 24, 27, 29, 34, 42

The CRScope feature dimension is 100, which is a spare vector
with most element values are zero. On the other hand, the length of
the Exniffer feature is 44, and the listed features are set to 1. When
only considering Exniffer features, they are identical, although their
corresponding PoC code completely differ. However, one of them
represents the crash due to a security bug, and the other represents
the crash due to a non-security bug. It is clear that Exniffer gives
the same label to these two bugs. On the other hand, CRScope
correctly labels the first bug as a security bug, and the other as
a non-security bug because we encode each vector element with
a numeric (quantitative) value, not a binary value, providing the
models with more flexibility in classifying security bugs.

7 RELATEDWORK
There are a limited number of previous studies on predicting ex-
ploitability [23, 60, 66] and prioritizing bugs by analyzing call
stacks [6, 32, 64] or descriptions [2, 9, 31] in bug reports. No previ-
ous work addresses predicting security-related bugs solely from an
observed JS engine crash. Predicting security-related bugs in a JS
engine is not straightforward. In practice, classifying a reported bug
requires domain expertise because of the complexity and enormous
size of state-of-the-art JS engines. To our best knowledge, CRScope
is the first tool to classify security-related bugs from crash-dumps
by building machine learning models from the past verdicts of JS
engine developers.

7.1 Crash Analyses
Gustavo et al. proposed VDiscover [23] to predict the exploitability
of a given test using machine learning. They leveraged static and
dynamic call sequences to the standard C library. Because their
approach uses a single static call sequence for each binary, the
static feature of VDiscover is not directly applicable for training
each JS engine that emits different crash-dump files for various
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JS inputs. They also required instrumenting a target binary and
its dynamically linked libraries to extract dynamic call sequences,
resulting in significant overheads for large software such as JS
engines.

Exniffer [60] also classifies the exploitability of a given core-
dump by using machine learning models, similar to the approach
used by CRScope. Exniffer extracts a set of features from core-dump
files and run-time information by leveraging hardware-assisted
monitoring such as Last Branch Record (LBR) register [24]. In con-
trast to monitoring execution traces, LBR does not impede any
real-time performance. However, it has a limited window size for
tracing executed instructions, and requires an Intel processor with
LBR supports. Without LBR support, an LBR simulator is required,
which brings inevitable performance overhead. The total number
of features used in Exniffer was 51, which is seven times larger than
the number of features used in CRScope. This difference comes
from the method used to vectorize each feature, not from a limited
feature scope of CRScope. Exniffer encodes every feature value as
binary number, thereby increasing feature vector dimensions.

ExploiMeter [66] uses fuzzing and machine learning techniques
to evaluate software exploitability. It also uses static features from
ELF executables extracted using hexdump, objdump, ldd, and read-
elf utilities. Although ExploiMeter uses dynamic fuzzing tests to
update the prior beliefs on exploitability, the dataset is labeled using
!exploitable, which is shown to be less accurate than Exniffer.

RETracer [5] is another study that identifies functions to blame
for an observed crash. It analyzes program semantics extracted from
memory dumps. It performs backward and forward taint analyses,
then identifies blamed functions from backward data flow graphs.
Although this work was deployed on Windows Error Reporting
(WER), it focused on the Windows platform running on x86 and
x86-64 architectures. Also, they did not consider whether a given
crash is due to a security bug or not.

The representative difference of CRScope from the previous
studies is that we classify security bugs, not exploitable bugs, and
target JS engines, which are larger and more sophisticated than the
common software projects that the previous studies were evaluated
on. Furthermore, CRScope uses only crash dumps which are trivial
to obtain.

7.2 Bug Report Analyses
Classifying bug reports is important for the BTSs of software projects
like browsers to prioritize bugs, detect duplicates, and assign devel-
opers. Various research efforts have been devoted to triaging bug
reports in BTSs.
Stack Traces. This line of work [6, 32, 64] presented a method for
prioritizing crashes using stack traces, although no consideration
was given to whether the crash was exploitable or security-related.
Kim et al. [32] predicted whether a crash will be frequent (top
crash) or not (bottom crash). They extracted crash stack traces and
functions to train their model. Dang et al. [6] improved existing
Microsoft Windows Error Reporting (WER) by proposing a novel
bucketing method based on the Position Dependent Model (PDM),
which is a similarity measure for call stacks. CrashLocator [64] re-
covers approximate crash traces via stack expansions and computes
the suspicious scores for each function in the recovered traces. A

ranked list sorting the functions by their suspicious scores helps
to locate a faulty function. These approaches using stack traces
are simple and bring almost no overhead; however, they are not
effective for newly added functions.
Descriptions. In [2, 9], Gegick et al. and Behl et al. proposed ap-
proaches that apply text mining on natural-language descriptions
of bug reports to train a statistical model for classifying a bug report
as either a security bug report or a non-security bug report. Kanwal
and Maqbool developed a recommender which automatically prior-
itizes new bug reports using machine learning [31]. They used the
categorical and text attributes of a bug report as training features.
The former included, for example, component, severity, platform,
operating system, bug lifetime, developer, and the latter included
the summary and description. Some research introduced machine
learning approaches to detect duplicate bug reports [28, 52, 59] and
other presented machine learning approaches to recommend bugs
that the developer should work on [1, 29, 50]. Although the previ-
ous research used bug reports from large-scale software projects
such as Eclipse, Cisco, and Mozilla, their main limitation is that
they require well-written bug reports created by the bug reporters.

8 CONCLUSION
We designed and implemented CRScope to classify whether a given
crash-dump is security-related. Specifically, it checks whether the
PoC code snippets causing JS engine crashes trigger its inherent se-
curity bugs. We also demonstrated that prior approaches, including
Exploitable and AddressSanitizer , are unfit for classifying security
bugs in JS engines.

CRScope leverages a machine learning classifier trained on past
verdicts by domain experts. Rather than using arbitrarily selected
general features, we feed the model with engine-specific local fea-
tures, which reflect the historical context in which each JS engine
crashed. We then let CRScope select the best features for rendering
correct verdicts.

When evaluated on 339 bugs and their 766 crashes, CRScope
achieved 0.85, 0.89, and 0.93 AUCs for Chakra, V8, and SpiderMon-
key, respectively; it outperforms all tools including Exniffer from
the previous studies in all cases. The experimental results demon-
strate its practical utility. We invite further research by releasing
the ground truth dataset and the source code of CRScope.
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