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ABSTRACT
Black-box web scanners have been a prevalent means of perform-
ing penetration testing to find reflected cross-site scripting (XSS)
vulnerabilities. Unfortunately, off-the-shelf black-box web scanners
suffer from unscalable testing as well as false negatives that stem
from a testing strategy that employs fixed attack payloads, thus
disregarding the exploitation of contexts to trigger vulnerabilities.
To this end, we propose a novel method of adapting attack payloads
to a target reflected XSS vulnerability using reinforcement learning
(RL).We present Link, a general RL frameworkwhose states, actions,
and a reward function are designed to find reflected XSS vulnera-
bilities in a black-box and fully automatic manner. Link finds 45,
213, and 60 vulnerabilities with no false positives in Firing-Range,
OWASP, and WAVSEP benchmarks, respectively, outperforming
state-of-the-art web scanners in terms of finding vulnerabilities and
ending testing campaigns earlier. Link also finds 43 vulnerabilities
in 12 real-world applications, demonstrating the promising efficacy
of using RL in finding reflected XSS vulnerabilities.

CCS CONCEPTS
• Security and privacy→Web application security.

KEYWORDS
reinforcement learning; cross-site scripting; penetration testing;

ACM Reference Format:
Soyoung Lee, Seongil Wi, and Sooel Son. 2022. Link: Black-Box Detection
of Cross-Site Scripting Vulnerabilities Using Reinforcement Learning. In
Proceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022,
Virtual Event, Lyon, France. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3485447.3512234

1 INTRODUCTION
Over a decade of research, the identification of reflected cross-
site scripting (XSS) vulnerabilities has evolved. Prior research has
proposed static methods [27, 32, 33, 39, 73], dynamic detection [21,
51], hybrids of static and dynamic methods [3, 4, 5, 10, 70], symbolic
execution [2, 37], and penetration testing [58, 63]. Unfortunately,
reflected XSS vulnerabilities remain prevalent on the Web [48].

In practice, black-box web scanners have been heavily used
to detect reflected XSS vulnerabilities owing to their operational
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merits; they require no access to source code nor any changes to
the run-time environments of target web applications.

A common testing strategy of such off-the-shelf black-box scan-
ners is to inject a series of payloads in their attack dictionary and
then check whether any of the injected payloads indeed trigger
XSS vulnerabilities. However, this straightforward strategy suffers
from several limitations: (1) penetration testing campaigns take a
long time to complete due to the brute-forcing of all payloads in the
attack dictionaries; and (2) they disregard the output contexts in
which injected input values appear, thus producing false negatives.
Contributions. To overcome these limitations, we present a novel
approach of adapting attack payloads to a target reflected XSS
vulnerability. We suggest leveraging reinforcement learning (RL)
to adapt attack payloads while observing the responses of previous
attack attempts. To demonstrate the fidelity of leveraging RL, we
design and implement Link, a fully automatic web scanner using
an RL agent designed to identify reflected XSS vulnerabilities.

One technical challenge of applying RL is that it is difficult to
define states, actions, and a reward function that contribute to the
convergence of an RL agent in addressing real-world problems [16].
Another challenge is to train a transferable RL agent when the
training and testing environments are different. That is, an RL
agent trained on training benchmarks should be effective in finding
reflected XSS vulnerabilities in real-world applications.

To address the former challenge, we explore and propose RL
algorithms, states, actions, and a reward function for an RL agent,
which fit into finding XSS vulnerabilities with high performance.
For the latter one, we design states and actions that are general
enough to model how an adversary adapts its payloads to a tar-
geted real-world website in a black-box manner. Specifically, we
propose a way of encoding the output context around a reflected
payload into a state consisting of 47 features. We also suggest seven
payload generation and 32 mutation rules for RL actions, enabling
the composition of sophisticated payloads. We further present a
reward function that enables an RL agent to automatically learn an
optimal policy, avoiding implementing vendor-specific heuristics.

We evaluated Link’s efficacy in finding reflected XSS vulnera-
bilities in Firing-Range, OWASP, and WAVSEP benchmarks. Link
found 343 vulnerabilities with no false positives, outperforming
other existing web scanners, including Burp Suite, Wapiti, ZAP,
and Black Widow. The number of requests necessary to identify
these vulnerabilities is lower than with other state-of-the-art tools,
reducing the overall testing campaign time. We emphasize that
Link’s ability to adapt attack payloads helps shorten the testing
time. When applying Link to finding XSS vulnerabilities in 12 real-
world applications, Link reported 43 vulnerabilities.

In summary, we demonstrate that it is feasible to leverage RL
to accurately identify reflected XSS vulnerabilities in a black-box
manner. We present effective methods of defining the states, actions,
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1 <?php
2 // Exploit Payload:
3 // '></textarea><scrscriptipt>alert(1);</scrscriptipt>//
4 $value = $_GET["value"];
5 $value = str_replace("script", "", $value);
6 echo "<textarea attribute='" . $value . "'></textarea>"; ?>

Figure 1: An XSS vulnerability due to incorrect sanitization.

and a reward function that contribute to making the Link’s RL agent
converge with high performance in a fully automatic way.

2 REINFORCEMENT LEARNING
Reinforcement learning is a machine learning algorithm that

trains an agent to learn a policy of determining optimal actions
in a given environment. The agent’s goal is to learn an optimal
policy that maximizes the expected reward [34]. Specifically, an
agent performs actions and observes changes in the environment E
over a number of discrete time steps [41]. At each time step t , the
agent receives a state st from E and selects an action at from the
set of possible actions A according to its policy π . For the selected
at , the agent computes an expected reward Rt and then derives the
next state st+1 via interacting with E.

A reward rt represents a scalar value that the agent gets at the
given time step t . Rt summarizes all rewards rt from the given
time step t to the terminal time step T with discount factor γ : Rt =∑T
i=0 γ

irt+i . The agent finds an optimal policy π that maximizes Rt
when following π for each state st . Thus, π (a |s) is often a mapping
function that maps from a given state s to an actiona or a probability
distribution over actions across A, given s .
Actor-Critic algorithm. The REINFORCE algorithm parameter-
izes the policy function with neural networks πθ (a |s) and updates
the networks via conducting gradient ascent on Eπ [Rt ] [67]. How-
ever, computed gradients are often noisy and have high variance,
causing instability and slow convergence when deriving the op-
timal policy. A2C [41] addresses this problem by extending the
baseline approach [36]. For the objective function that the agent
aims to maximize, A2C leverages the difference between Q(s,a)
and V (s) that model a quality and value function, respectively. The
gradient ascent on this difference tends to produce a low variance,
thus enabling fast convergence. While maximizing the objective
function, A2C trains actor and critic networks together. The actor
networks are trained to select an action at a given state, and the
critic networks are trained to evaluate the agent’s action.

3 MOTIVATION
A reflected XSS vulnerability exploits a bug that allows for an
adversary to inject malicious JavaScript (JS) code into a target
web server’s response (i.e., webpage). The principled approach
to preventing this type of vulnerability is to enforce correct san-
itizers [29, 74]. Unfortunately, in practice, developers’ mistakes
of omitting sanitizers or implementing incorrect ones result in
prevalent XSS vulnerabilities on the Web [5, 48]. Existing black-box
web scanners have been applied to find reflected XSS vulnerabil-
ities [40, 46, 53, 60, 66, 75]. A common testing strategy of these
tools is to inject their payloads and then to determine whether
the injected payloads indeed trigger vulnerabilities. However, the
existing black-box scanners share two drawbacks: (1) unscalable
testing campaigns and (2) context-unaware payload generation.

Unscalable testing campaigns. Most web scanners, including
Wapiti [66] and XSSer [75], are agnostic to the innerworking of a
target website. They brute-force web attacks by throwing a stream
of predefined payloads, expecting one of them exploits inherent vul-
nerabilities. Unfortunately, this strategy contributes to increasing
the number of attack requests, thereby resulting in long testing cam-
paigns. For example, XSSer uses a payload dictionary that consists
of 1,293 predefined payloads to find reflected XSS vulnerabilities.
When the payload that triggers a target vulnerability is at the end of
this dictionary, it would have attempted 1,292 futile payloads. This
is not a scalable approach to detecting reflected XSS vulnerabilities.
Context-unaware payload generation. Black-box web scanners
do not adapt their payloads to a target vulnerability, producing
false negatives, which could have been triggered by adjusting the
payloads. Specifically, they ignore the context in which a reflected
XSS payload appears in the output HTML webpage, attempting
ineffective payloads that do not trigger XSS vulnerabilities.

Figure 1 shows an example of such a reflected XSS vulnera-
bility. This PHP application incorrectly sanitizes user input via
$GET["value"]. It attempts to remove all script tags by remov-
ing the "script" string constant in Line (Ln) 5. An attacker is
able to bypass this filter by injecting overlapped string values (e.g.,
<scrscriptipt>alert(1);<scrscriptipt>). However, this pay-
load alone cannot trigger the vulnerability since it would appear as
a textarea attribute in Ln 6, not as a JS script element. Therefore,
the attacker should inject both the single quotation mark and the
closing textarea tag, as the payload in Ln 3 shows, which requires
adjusting the original payload of <script>alert(1);</script>.

We emphasize that Buyukkayhan et al. [7] reported a recent trend
of increased sophistication in attack payloads to trigger XSS vulner-
abilities. Their findings demonstrate that the surrounding output
context in which a reflected input appears determines an attack pay-
load to trigger XSS vulnerabilities, which requires context-aware
payload generation.
Motive. The aforementioned limitations have remained as open
problems for black-box web scanners. To overcome those, we pro-
pose leveraging an RL agent to adapt attack payloads to a target
context by analyzing the responses of previous attack attempts. We
envision a fully automated RL agent that attacks a target website by
adapting attack payloads to discover reflected XSS vulnerabilities.

3.1 Technical Challenges
Finding reflected XSS vulnerabilities using RL entails two chal-
lenges: (1) a non-converging RL agent and (2) a transferable RL
agent to find XSS vulnerabilities in real-world applications.
Non-convergence problem. Reinforcement learning has been de-
ployed in diverse domains, including arcade games [42], block-chain
attacks [30], and robotics [52], demonstrating its effectiveness in
various real-world settings. Unfortunately, the application of RL
to real-world problems is known to be challenging due to non-
converging RL agents [17]. This is primarily due to poorly defined
actions, states, and a reward function that model target real-world
problems [43, 50]. Therefore, a technical challenge here is to prop-
erly model actions, states, and a reward function that contribute
to converging a high-performing RL agent that is able to find XSS
vulnerabilities [12, 18].
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Figure 2: Overview of Link architecture.

There have been a few previous studies of applying RL to find
web vulnerabilities, including SQL injection [19] and reflected XSS
vulnerabilities [8]. However, these studies have limitations of re-
quiring human involvement in the agent training and testing. Er-
dodi et al. [19] defined a limited set of actions and states for their RL
agent to discover SQL injection vulnerabilities, covering a small set
of synthetic SQL injection scenarios. Suggester [8] required human
expert’s involvement in both the RL training and testing steps. The
involvement is designed to facilitate the convergence of their RL
agent by teaching the agent the expert’s decisions. However, this
manual involvement hinders automatically finding vulnerabilities
and diminish the needs of using RL.
Transferable RL agent. Previous studies of applying RL have
in common that the training and testing environments of an RL
agent are the same [42, 59]. Mnih et al. trained their agent on a
specific Atari game and used this agent to play the same game [42].
However, for effective testing campaigns, an RL agent trained on
training benchmarks should find XSS vulnerabilities in real-world
web applications; we believe that auditors do not want to train their
agents from scratch on their websites. In this regard, we argue that
states and actions for an RL agent should be general enough to
cover various types of real-world reflected XSS vulnerabilities.
Our approach. In this paper, we present Link, an RL agent for
detecting reflected XSS vulnerabilities with precision and efficiency.
Link tackles the two technical challenges aforementioned. For the
former challenge, we define a series of actions and states that are
designed to achieve stable convergence without the need for human
assistance or the need to assume only a subset of the XSS attack
scenarios. For the latter challenge, we demonstrate several ways of
observing responses, including the shape of reflected payloads and
their surrounding context, which contribute to generalizing the
trained agents to operate automatically in real-world applications.

4 OVERVIEW
Link is a penetration testing tool designed to find reflected XSS
vulnerabilities. Link has two phases: training and testing. In the
training phase, Link takes in a large number of URLs, each of which
refers to a web application with a reflected XSS vulnerability. Using
this set of websites, Link trains an RL agent to learn an optimal
policy for generating an attack payload to adapt to a given environ-
ment. This training phase is a one-time setup procedure. With the
guidance of the trained agent, the testing phase conducts black-box
penetration testing against a given URL of the target website. Once a
testing campaign for the target URL is over, Link reports functional
requests that succeeded in exploiting reflected XSS vulnerabilities.

Figure 2 illustrates the architecture of Link. It consists of three
components: crawler, environment, and agent. The crawler collects
all transitively connected websites, thus identifying subdomain
URLs and their input parameters to use in injecting attack payloads.
For each pair of an URL and an input parameter, the agent and
the environment work in tandem to perform testing (or training)
via sending attack requests with payloads. The environment pro-
vides interfaces for the agent to observe changes respective to the
agent’s actions. The agent determines an action to conduct based
on observations of the environment.
Crawler. Given URLs, Link starts by crawling their subdomain
URLs, which become targets for penetration testing. In particular,
Link visits each one of the given URLs, parses its HTML response,
and then extracts all link elements for the next URLs to visit. Link
iterates this process until there are no remaining URLs to visit.

For each identified URL, Link collects input parameters for the
agent to use for injecting payloads. It collects input parameters from
GET requests by extracting key attributes in their query strings.
Also, when visiting each webpage, the crawler retrieves all attribute
values of input tags in HTML form elements, which become input
parameters for POST requests to perform penetration testing.

Note that computing a sound set of input parameters is beyond
the scope of this paper. Link focuses on conducting efficient pen-
etration testing via adaptively changing its attack payloads. We
revised Wapiti [66], an open-source web vulnerability scanner, to
leverage an RL agent in adapting attack payloads. We extended the
crawler of Wapiti to identify target URLs and input parameters;
specifically, we included Referer header and URI-based injection
for additional input sources.
Environment. The environment consists of two components: web
server and attack manager. The web server with a given URL runs
the target application. The attack manager is an abstraction layer of
the web server that provides interfaces for the RL agent to observe
changes due to the agent’s actions.

The attack manager is designed to support four major opera-
tions: (a) generating or mutating attack payloads based upon the RL
agent’s actions, (b) checking whether an attack request succeeds
in triggering a reflected XSS vulnerability, (c) extracting observa-
tion information from the response to an attack request, and (d)
computing a reward from observation information.
Agent. The agent conducts the core RL functionality. In the train-
ing phase, it takes in configurable parameters, including learning
rate and discount factor, as input and learns an optimal policy of
generating an attack payload to adapt to a given environment. In
the testing phase, the trained agent adaptively selects an action at
given the current state st of the environment.

5 DESIGN
5.1 Link Workflow
Algorithm 1 illustrates the overall training and testing procedures
that Link conducts to identify reflected XSS vulnerabilities.
Training. The training algorithm (Ln 1) starts with the target set
of URLs and input parameter pairs (tgt_set) that the crawler iden-
tified (§4). This algorithm then iteratively performs the Episode
function until total_step reaches MAX_STEPS. For each iteration,
which we call an episode, it sequentially selects a URL and an input
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parameter pair in tgt_set (Ln 4) and trains the RL agent (i.e., aдent )
to generate an exploit for this pair via conducting Episode(). Note
that MAX_STEPS is a hyperparameter that determines the number
of total steps on which the RL agent should be trained. We set the
default value of MAX_STEPS to be 3.5M.

In the Episode function (Ln 12), the agent performs a series
of actions a given number of times (STEPS_PER_EPISODE) for the
selected URL and input parameter pair. Specifically, for each target
pair, Link initiates a training campaign episode. For each episode,
Link first checks whether a given initial payload appears in the
target webpage. For this, Link sends an HTTP(S) request with a
valid input payload of [Initial Payload] in Ln 15. [Initial
Payload] is an alphanumeric string having special characters (e.g.,
">/’>injectionhere1234). It then checks whether this particular
string is included in the response in Ln 16. We prepared four initial
payloads to perform this testing. If Link cannot confirm the presence
of any of the initial payloads, it strongly indicates that attacking
the current pair of an input parameter and a target URL cannot
trigger a vulnerability. Therefore, Link immediately terminates the
current episode and starts a new episode on a different pair of a
URL and an injection parameter (Ln 18).

If the payload is present, Link parses its response and checks
how this valid input string appears on the webpage. In Ln 19, Link
computes injection point features at the first appearance position
of the current payload (§5.3). After this initial process of computing
injection point features, Link executes a training loop in Lines
(Lns) 20–28, which trains the RL agent. This training process iterates
multiple steps, and each step becomes an execution unit for which
the RL agent performs an action.

For each step, the agent selects an action based on observations
in Ln 21. The attack manager then generates or mutates an attack
payload corresponding to the selected action at (§5.2) in Ln 22. The
attack manager sends an attack request with this payload and veri-
fies whether the sent request succeeds in triggering a vulnerability
(§5.4) in Lns 23–24. Link then observes this response and computes
a feature vector of st+1 in Ln 25 (§5.3). In the training phase, Link
also computes a reward (§5.4) and trains the agent to learn an opti-
mal policy that maximizes the expected reward in Lns 26–27. When
either (1) the attack is successful or (2) the current step reaches
STEPS_PER_EPISODE, the agent terminates the current episode.
Testing. Link leverages the Test function to find XSS vulnerabili-
ties in a given tgt_set. This phase is analogous to the innerworking
of the Train function except that it inspects every pair in tgt_set
(Ln 9). For Episode in the testing phase, Link does not execute the
highlighted code since Link does not need to train the RL agent via
computing expected rewards.
RLalgorithm.When trainingaдent as shown in Ln 27, we leverage
Advanced Actor-Critic (A2C) [41].We train two networks: actor and
critic. The actor networkmaps each state s to an action a, outputting
a probability distribution πθ (a |s). The critic network maps each
state s to a quality value by computing Vθ (s). A2C trains πθ (a |s)
and Vθ (s) together in the direction of maximizing an advantage
function, which denotes the advantage degree of taking a specific
action a relative to the quality value of being at state s .

We define our advantage function asA(st ,at ) = Q(st ,at )−V (st ),
whereQ(st ,at ) emits the quality value of taking at at st , andV (st )

Algorithm 1: Link Workflow (Highlighted codes are only
executed during training).

1 function Train(tдt_set)
2 total_step ← 0
3 while total_step < MAX _ST EPS do
4 url , param← Select (tдt_set )
5 f ound , payload , step ← Episode(url , param)
6 total_step ← total_step + step
7 function Test(tдt_set)
8 for url, param ∈ tдt_set do
9 f ound , payload , step ← Episode(url , param)

10 if f ound then
11 ReportBug(payload , url , param)
12 function Episode(url , param)
13 // Initialize the payload and the current step t
14 payload ← [Initial Payload], t ← 0, f ound ← f alse
15 r esponse ← SendReqest(url , param, payload)
16 if !CheckReflected(payload , r esponse) then
17 // If r esponse does not reflect payload, return f alse.
18 return f alse, payload
19 st ← Observe(payload , r esponse , f ound)
20 while t < ST EPS_PER_EP ISODE and !f ound do
21 at ← aдent .GetAction(st ) // Get an action at given st .
22 payload ← MutatePayload(payload , at )
23 r esponse ← SendReqest(url , param, payload)
24 f ound ← BugOracle(payload , r esponse)
25 st+1 ← Observe(payload , r esponse , f ound)
26 rt ← Reward(t , st+1 ,payload , f ound)
27 aдent .Train(st , at , st+1 , rt )
28 t ← t + 1;
29 return f ound, payload, t

computes the quality value of being st . Considering Q(st ,at ) ≃
rt + γV (st+1), the advantage function can be defined as follows:

A(st , at ) = rt + γV (st+1) −V (st ) (1)

Here, rt is a reward for the action at that the agent chooses based
on the current state st . In other words, rt represents the degree
to which at is appropriate given st to trigger an XSS vulnerabil-
ity. The trained Vθ (s) indicates how good st is to find target XSS
vulnerabilities, and πθ (a |s) provides a probability distribution of
actions, denoting which mutation or generation rule at should be
favored given st to maximize the total reward Rt .

To train the actor and critic networks, A2C uses the objective
function J and computes its gradient ascent as follows:

J (θ ) = E[
T∑
t=0

γ t rt |πθ ], ∇Jθ =
T∑
t=0
∇θ loдπθ (at |st )A(st , at ) (2)

For each networks, we used fully-connected neural networks
having three layers, each size of which is 128.We used the rootmean
square propagation (RMSProp) optimizer to train the networks.
Training automation. Link automates the training procedure
without human involvement. Caturano et al. [8] used a human-
in-the-loop approach in which their system users should analyze
attack results and compute the current state. By contrast, Link
leverages the bug oracle (§5.4) that checks the reflection of attack
payloads and attack success, removing human involvement.

5.2 Generating/Mutating Payload
Link supports two action types: generation and mutation. Table 4
in Appendix 10.2 shows a total of 39 actions that the Link agent
can take to generate attack payloads. These actions are categorized
into two groups: seven actions of generation and 32 actions of mu-
tation. To define these actions, we investigated attack payloads in
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Firing-Range [26], WAVSEP [9] and benchmarks from sanitization
bypassing techniques [13, 49, 54, 55]. These benchmarks list known
exploitation techniques and common vulnerable logic. We general-
ized unit actions so that their combinations are able to generate all
the exploits in these benchmarks.
Generation. Link has two action groups: basic payload and JS
component generations. For the basic payload generation, the attack
manager generates a payload using HTML elements that embed
JS snippets, such as script tags, media tags, and event attributes.
For example, for the second action in this group, Link generates
the payload <img src=‘x’ onerror=‘alert(1);’/>, injecting the
image tag with JS code. Note that only one payload generation rule
is randomly selected when there are multiple application rules for a
chosen action. For example, when the attack manager performs the
second action, one of the four media tags (i.e., img, video, audio,
and svg) is randomly selected for the payload generation.

For the JS component generation, Link prepares an attack JS
snippet without any HTML elements that enable the execution
of this JS snippet. This category of generations is designed to ad-
dress cases in which the injection point is within a script execution
environment (e.g., <script>[payload]</script>).
Mutation. The attack manager mutates components in the previ-
ous attack payload according to a mutation action at that the agent
selects. We prepared six groups of mutation actions: prefix, suffix,
tag, attribute, JS snippet, and entire string changes. Each action is
designed to (1) escape the echoing context of a reflected payload (ac-
tions 8–20, 21, 22–24) and (2) evade incorrect sanitization (actions
other than the aforementioned).

If the previous attack payload does not have components rep-
resenting the category of the current action at , the attack man-
ager does not apply the action to the payload (i.e., Line 22 of
Algorithm 1 is skipped). For example, if the agent observes the
<script>alert(1);</script> payload and then selects the 28th
action of the attribute category, the attack manager does not apply
this action due to the absence of an attribute and sends a request
with the same payload. In this case, the attack manager decreases
the reward because the same payload is used repeatedly (§5.4).

We note that actions across different categories are combined
over multiple steps. However, actions within the same category are
substituted. For example, given the 1st, 22nd, and 23rd actions, Link
computes a payload of <script>alert(1);</script>’ because
the 22nd and 23rd actions belong to the same category.

5.3 Observations
We model a state (s) as a feature vector (f1, f2, ..., fn ), each element
of which is a scalar value that represents the respective feature’s
existence or its type. Table 5 in Appendix 10.2 enlists all the 47
features that the attack manager observes. These features are cate-
gorized into five groups: payload appearance, payload repetitiveness,
reflected payload appearance, payload context, and attack result.
Payload appearance. This category of 29 features is designed to
check the presence of particular strings in an attempted payload.
Each selected string represents a way of injecting a JS snippet; by
checking its presence, Link checks which injection method has
been used for the RL agent to derive the next state. Specifically,
these features check whether a current payload has a certain tag

(e.g., <script> and <img>), contains a JS snippet (e.g., alert(1)
and confirm(1)), or uses capitalized tags. Each feature value is 0 or
1, indicating the presence or absence of the corresponding string.
Payload repetitiveness. This category of features represents the
repetitiveness of payloads, which contributes to the agent avoiding
using the same attack payload. The 30th feature represents fre-
quency of the current payload has been used in the current episode.
When this feature is positive, the attack manager gives a negative
reward for a selected action (§5.4). The 31st and 32nd features repre-
sent the previous action index at at−1 and the current action index
at at that the agent has chosen.
Reflected payload appearance. The features in this category de-
scribe how the attempted payload is reflected in its response. The
33rd feature indicates whether a script tag (i.e., <script>) or media
tag (e.g., <img>) contained in the current payload appears as the
same tag in the response. For this, the attack manager parses the
response and then checks for the presence of the same tag at the in-
jection point. Link is able to accurately identify where the injection
point is through the episode initialization process in Lns 14–19.

The 34th feature represents whether a JS snippet (e.g., alert(1)),
JS URL, or JS pseudo protocol in the payload appears in the re-
sponse. The 35th feature indicates the string similarity between
the attempted payload and the reflected payload in the response.
For similarity matching, we used a gestalt pattern matching al-
gorithm in difflib [23]. For example, if the generated payload is
<script>alert(1);</script> and the reflected payload is <>al-
ert(1);</>, the 33rd, 34th, and 35th features become -1, 1, and 3.5,
respectively. Even if the XSS vulnerability is not triggered via the
current action at , these features reveal that the reflection of the
payload is partially achieved.
Payload context. This category of features represent the context
of an injection point in the response, which Link identified in the
initialization step in Ln 19 (§5.1). We note that these features are
designed to collect context information around an injection point.

The 36th feature indicates the response type among three formats
(i.e., HTML, CSS, and JSON). The 37th feature specifies the default
value type of the input parameter. To collect this information, the
attack manager leverages the crawling results to check whether
the parameter has a default value. The 39th to 41st features address
the information necessary for pre-escape and post-escape of the
injection point. The last feature in this category is the reflection of
a valid payload for the decision to terminate the current target pair.
Attack result. This feature indicates whether the vulnerability is
triggered by the action at by checking the information passed by
the bug oracle (§5.4).

5.4 Computing Reward
The attack manager computes a reward rt for an action at that the
agent chooses based on the current state st . The current action at
governs the next payload to attempt and affects the next state st+1.
The reward rt takes into account the next state st+1 to evaluate
whether at is a good action that maximizes the expected reward.

Algorithm 2 in Appendix 10.3 describes how the attack manager
computes an rt . We designed two types of rewards; (1) a positive
reward to indicate the degree towhich a testing campaign ends early
and (2) a negative reward of indicating the repetitiveness of a chosen
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action. Specifically, when at enables successful exploitation, the
reward becomes the difference between the number of maximum
steps (STEPS_PER_EPISODE) to the current t, thereby motivating
the agent to find a proper attack payload as early as possible. By
contrast, Link decreases rt by one when at is the same as at−1 or
when the current payload equals the previous payload, instructing
the agent to avoid the same action.
Bug oracle. The BugOracle function monitors the reflected pay-
loads in the responses to determine whether the input payloads
successfully trigger the reflected XSS vulnerabilities. We designed
BugOracle to check the presence of actual injected JS snippets, in-
stead of reflected futile HTML tags, thus decreasing false positives.
In particular, the validation algorithm differs depending on the last
attempted action in the generation category (actions 1–7). For ex-
ample, when the agent conducts the 1st, 20th, and 25th actions, the
oracle uses the validation technique for the 1st action. The reason
is that while all mutation actions are designed to either bypass
incorrect sanitization logic or escape confined input values, each
generation action determines how the injected JS code is executed.
Actions 1–2. The first and second actions are designed to inject
script and media tags, respectively. For the first action, the bug
oracle checks for the presence of script tags with the JS snippet
alert(1);. For the second section, it checks the presence of media
tags with the attribute-value pair of onerror=alert(1);.
Actions 3–4. The third and fourth actions are designed to handle
payload reflections in the form of <[tag] [payload]. The bug or-
acle identifies which tag is used ahead of the injection point. It
then checks whether this tag has an attribute-value pair of which
the value has alert(1); and attribute is among onerror, onclick,
onmouseover, and onload. Otherwise, it checks whether the src
value of this tag is http://attack.js.
Actions 5–7. Actions 5–7 are designed to inject JS code in the form
of <[tag] [attribute]=[payload] or <script>[payload]</sc-
ript>. To check for the former, the attack manager fetches the
[tag] at the injection point. It then checks whether this identi-
fied tag has an event attribute (i.e., onerror, onload, onclick, or
onmouseover) for action 5 or a URL attribute (src or href) for ac-
tions 6–7. It then confirms whether the payload is inserted into the
value of this attribute. To validate the latter, the attack manager
scans for each script tag across the entire response and then checks
if the content of the identified script tag contains the payload.

6 EVALUATION
We evaluate Link on finding reflected XSS vulnerabilities by compar-
ing it against existing scanners (§6.2). We also analyze the capability
of Link to find reflected XSS vulnerabilities in 12 real-world PHP
applications (§6.3). Appendix 10.4 describes the degree to which
hyperparameters and RL algorithms contribute to Link’s capability
of finding bugs. Finally, we present a case study in Appendix 10.5.

6.1 Experimental Setup
We conducted experiments on one desktop machine running 64-bit
Ubuntu 18.04.4 with an Intel i7-8700 CPU (12 cores) and 32 GB of
main memory.
Benchmarks. We selected the benchmarks of server-side appli-
cations with reflected XSS vulnerabilities from Firing-Range [26],

WAVSEP [9], and OWASP benchmarks [47]. Note that these bench-
marks have been used to test the capability of web scanners in
finding various security bugs. Among the applications in these
benchmarks, we selected applications with at least one reflected
XSS vulnerability. Our benchmarks include 351 server-side applica-
tions in PHP and Java Server Pages (JSP); 45, 60, and 246 applications
are from Firing Range, WAVSEP, and OWASP, respectively.

In addition, we prepared the Filter Evasion benchmarks, which
include 25 of our own applications. Each one is designed to require
a sophisticated payload to evade its input sanitization and trigger
a reflected XSS vulnerability. We referenced previously known
incorrect sanitization filters, evasion techniques [13, 49, 54, 55, 62],
and vulnerable applications due to incorrect sanitization, including
4Images (CVE-2009-2131) [1] and UliCMS (CVE-2019-11398) [69].

We also prepared 12 PHP web applications listed in the first col-
umn of Table 3 to demonstrate Link’s efficacy in finding vulnerabili-
ties in real-world applications (§6.3). We selected these applications
from the two sources: (1) open-source web applications with XSS
vulnerabilities that a Netsparker scanning engine [44] identified;
and (2) evaluation datasets from previous studies [25, 37].
Training and testing. To train the agent, we used Firing-Range,
WAVSEP, and Filter Evasion benchmarks. We used Proximal Pol-
icy Optimization (PPO) [61], Deep Q-Network (DQN) [42], and
A2C [41] training algorithms for comparative evaluation (§10.4)
and set up A2C as the baseline for Link. For the remaining evalua-
tions, we trained the model with the hyperparameters set to 3.5M
MAX_STEPS, 500 STEPS_PER_EPISODE, a 0.95 discount factor, and
a 0.0005 learning rate, which yielded the best performance (§10.4).
The total time required for training the agent was 39.5 hours. In
the testing phase, we empirically set the STEPS_PER_EPISODE to
30, restricting the agent to try a limited number of attack attempts.

6.2 Comparison to Existing Web Scanners
We compared Link’s ability to find reflected XSS vulnerabilities
in the Firing-Range, WAVSEP, OWASP, and Filter Evasion bench-
marks against four state-of-the-art web scanners: Burp Suite Pro
(v2021.6.2) [53], Wapiti (v3.0.5) [66], OWASP ZAP (v2.10.0) [46],
and Black Widow (i.e., BW) [20]. We also setup Link with a ran-
dom policy agent (i.e., Link-R) that selects random actions instead
of the agent’s actions to demonstrate the agent’s efficacy. For a
fair comparison, we set the other tools to find only reflected XSS
vulnerabilities, preventing them from sending requests for other
types of vulnerabilities. Since Link leverages a stochastic policy, for
each experimental setup, we conducted five testing campaigns and
reported median values.

Table 1 summarizes the experimental results. Link found 343
true positives (TPs) (91.2%) with 33 false negatives (FNs) in all the
benchmarks, achieving the best performance compared to all the
other tools in terms of maximizing TPs and minimizing FNs.
TPs.Among the 343 TPs, we analyzed 181 TPs that other tools were
unable to identify, reporting them as FNs. The reported superior
performance of Link stems from three reasons: (1) Link was able to
generate appropriate exploit payloads that other tools were unable
to compose; (2) Link leveraged the more accurate bug oracle to
identify the reflected payloads; (3) the other tools skipped certain
types of input parameters due to their own heuristics.
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Benchmark # of Tools TP FP FN Time # of
Bugs Attempts

Firing-Range 45

Link 45 0 0 8s 459
Link-R 20 0 25 55s 1,351
Wapiti 37 0 8 8s 447
Burp 38 0 7 20s 4,344
ZAP 43 0 2 17s 1,530
BW 23 0 22 39s 218

WAVSEP 60

Link 60 0 0 5s 718
Link-R 28 0 32 55s 1,871
Wapiti 30 0 30 11s 1,782
Burp 54 0 6 5s 13,859
ZAP 52 0 8 11s 4,717
BW 13 0 47 5m 36s 577

OWASP
Benchmark 246

Link 213 0 33 1m 17s 11,912
Link-R 178 0 68 5m 47s 16,457
Wapiti 137 0 109 59s 6,451
Burp 186 0 60 1m 58s 121,311
ZAP 186 0 60 1m 30s 29,483
BW 157 0 89 137m 44s 10,759

Filter
Evasion 25

Link 25 0 0 4s 334
Link-R 6 0 19 30s 885
Wapiti 17 0 8 3s 505
Burp 22 0 3 1s 1,852
ZAP 6 0 19 5s 857
BW 12 0 13 8m 4s 602

Total 376

Link 343 0 33 1m 34s 13,423
Link-R 232 0 144 8m 7s 20,564
Wapiti 221 0 155 1m 21s 9,185
Burp 300 0 76 2m 24s 141,366
ZAP 287 0 89 2m 3s 36,587
BW 205 0 171 152m 3s 12,156

Table 1: Comparison with state-of-the-art tools.

Table 2 presents the root causes of FNs that other tools reported.
We observed that other scanners miss many vulnerabilities due
to reason (1) above, which demonstrates that the ability of the
RL agent to generate input payloads greatly contributes to finding
many vulnerabilities. We also note that Wapiti produced 56 FNs due
to reason (3). This result shows that although Link is implemented
on top of Wapiti, the Link’s input parameter selection algorithm
greatly contributes to finding more vulnerabilities.

We emphasize that Link’s performance stands out compared to
the other scanners regarding Filter Evasion benchmarks. This stems
from the effectiveness of the agent, which checks how the input
payload is reflected in the response and suggests optimal actions
to bypass incorrect sanitization logic. On the other hand, the other
scanners exhibit relatively low performance because they do not
have functional exploit payloads in their dictionary to identify FNs.
One solution is to put these payloads into the dictionary of the
existing scanners, but these payloads are uncommon as they are
specific to the target benchmarks. This eventually results in an
unscalable scanning campaign.

When comparing the performance differences between Link and
Link-R, we observed that the RL agent contributed to finding 111
additional vulnerabilities (343 for Link vs. 232 for Link-R) while
sending 7,141 fewer requests. These differences clearly demonstrate
that the agent learned to generate effective payloads in a context-
aware manner. We further describe a case study of describing Link’s
behaviors to find an XSS vulnerability in Appendix 10.5.
FNs. Link reported 33 FNs. For 33 FNs of these, the corresponding
applications used JS snippets to dynamically construct and send
requests, enabling Link tomiss extracting input parameters to inject.
We note that all scanners used in the experiment, including Link,
identify input parameters by parsing only HTML responses during
the crawling process, thus reporting the same FNs.

Reason Wapiti Burp ZAP BW Total

Reason (1): ineffective input payloads 53 29 49 73 204
Reason (2): incomplete bug oracle 13 6 7 0 26
Reason (3): unidentified input parameters 56 8 0 65 129

Total 122 43 56 138 181

Table 2: Vulnerabilities that other scanners report as FNs but
Link judges to be TPs (several bugs can be treated as FNs by
multiple tools.)

Performance. The seventh and eighth columns of Table 1 present
the execution time and the number of attempted requests for each
tool, respectively. We observed that Wapiti had the lowest execu-
tion cost because it has a small number of predefined payloads and
skips certain types of input parameters. These limited payloads
and parameters significantly undermine Wapiti’s ability to find
vulnerabilities compared to other scanners. Black Widow focused
on maximizing the crawling coverage rather than generating appro-
priate payloads. It thus uses a small size of the payload dictionary,
which results in reporting a small number of TPs. We note that Link
surpassed other techniques in terms of the execution times, number
of requests, and number of bugs found. Link required only 13,423
requests to identify 343 TPs, sending much fewer requests than did
the second best performant scanner (i.e., Burp). We also observed
that Wapiti and Burp sent many attack requests with different pay-
loads for several applications. By contrast, Link generated working
payloads within a few attempts. For instance, for a Filter Evasion
benchmark, Link, Wapiti, and Burp attempted 9, 37, and 26 different
payloads, respectively. For this application, ZAP reported a false
negative. This means that Link is capable of generating appropriate
payloads without brute-forcing all payloads in the attack dictionary.
Impact of observation features. We conducted evaluations to
assess the importance of each observation feature. For each feature,
we enforced Link not to use it by fixing its value to the initial value
and then measured the number of TPs. We observed that the 32nd,
7th, 41st, and 38th features contributed most to decreasing TPs by
48%, 18%, 12%, and 9%, respectively. The current action, the presence
of a JS snippet in the payload, escaping characters, and the injection
point type play important roles in finding TPs.

6.3 Discovering Real-World Vulnerabilities
We evaluated the Link’s capability of finding vulnerabilities in
12 real-world applications with 49 XSS vulnerabilities. As in Sec-
tion 6.2, in this experiment, we compared the detection capability
of Link against four existing web scanners with a time budget of
three hours. Table 3 and Figure 3 show the detection results and
the number of requests that each tool attempted, respectively. Link
had the second highest number of TPs (i.e., 43 vs. 33 for Wapiti, 46
for Burp, 36 for ZAP, and 25 for Black Widow), while reporting the
second lowest number of attack requests (i.e., 4,105 vs. 7,175 for
Wapiti, 38,622 for Burp, 147,595 for ZAP, and 879 for Black Widow).

We observed that Link found many real-world vulnerabilities
with fewer requests. We emphasize that the Link’s agent is trained
on the Firing-Range, WAVSEP, and Filter Evasion benchmarks,
which are different to the applications under testing; Link still
reported the second highest TPs.

Burp found more bugs than Link did because of the Burp’s page
crawling capabilities, including name guessing and extrapolation
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Application
(Version)

Link Wapiti Burp ZAP BW

TP FP FN TP FP FN TP FP FN TP FP FN TP FP FN

Webid (1.2.2) 10 0 0 10 0 0 10 0 0 10 0 0 0 0 10
Monstra (3.0.4) 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
SeoPanel (4.8.0) 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
FUDForum (3.1.0) 3 0 0 3 0 0 3 0 0 3 1 0 1 0 2
powebform (1.0.3) 13 0 0 12 0 1 13 0 0 12 0 1 12 0 1
chamilo (1.11.14) 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0
Textpattern (4.5.5) 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
Schoolmate (1.5.4) 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
ImpressCMS (1.3.10) 5 0 3 0 0 8 8 0 0 0 0 8 3 0 5
Ampache (4.4.2) 4 0 2 1 0 5 5 2 1 4 0 2 2 0 4
GeekLog (2.2.1) 3 0 0 2 0 1 3 1 0 2 0 1 2 0 1

osCommerce (2.3.3) 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0

Total 43 0 6 33 0 16 46 3 3 36 19 13 25 0 24

Table 3: The number of vulnerabilities found in real-world
applications using four different tools.

from naming conventions [65]. Designing a more advanced crawler
to find URLs and input parameters is not a goal that Link addresses.
Instead, we focus on adapting payloads using RL. Also, leverag-
ing the Burp crawler was not feasible for Link because Burp is a
commercial tool of which source code is not available for revision.

When considering only the input parameters and URLs that
Link’s crawler found, Link was able to find every vulnerability
that Burp found, but with far fewer requests. These experimental
results demonstrate that leveraging RL to adapt attack payloads is
a promising approach in performing penetration testing.
Zero-day vulnerabilities.We conducted additional testing against
the latest versions of applications with CVE reports in the past. Link
reported three new vulnerabilities in Geeklog (v2.2.1sr1) and one
in PESCMS (v2.3.3) (CVE-2021-44884).

7 LIMITATIONS AND DISCUSSION
We address the problem of adapting input payloads using RL. How-
ever, there are several other aspects that determine the performance
of black-box web scanners: (1) the coverage issue of crawling target
URLs to attack, (2) the identification of all input parameters to inject
payloads, and (3) the prioritization of input parameters to attack.
Because Link is built on top of Wapiti, the crawler and modules for
identifying and prioritizing input parameters are similar. However,
as we demonstrated in the evaluation, generating payloads using RL
contributed to Link finding 12 additional TPs that all the scanners
in the evaluation were unable to find.

We emphasize Link’s capability of reducing the number of attack
attempts to trigger target vulnerabilities. It is common that testing
campaigns of black-box web scanners take very long execution
times. Therefore, achieving both objectives of (1) minimizing the
number of requests and (2) maximizing true positives are important
tasks for these tools. However, existing off-the-shelf tools focus on
implementing their own heuristics. We argue that the approach of
leveraging RL is new and effective to address this problem while
avoiding implementing arbitrary heuristic rules.

We checked the efficacy of leveraging a Chrome headless browser
to check the script execution [8]. However, we observed that using
a headless browser introduced a 20% increase in training and testing
time. For this reason, we chose to parse HTML and JS responses
because parsing is required not only to determine the successful
exploitation but also to extract observation information. Note that
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Figure 3: The number of attempted requests by each tool to
find vulnerabilities (square root scale).

Link leverages a fully-automatic RL agent in its training and testing.
Unlike previous approaches [8], Link requires no human involve-
ment to evaluate chosen actions in given environments.

8 RELATEDWORKS
Payload generation with RL.Wang et al. [72] applied RL in gen-
erating SQL injection payloads to bypass web firewalls. Their RL
environments are open-source web firewalls: ModSecurity [64]
and WAF-Brain [6]. They encode elements in the SQL injection
payloads into states, and actions become mutation rules for each
element. The reward function is the value of the confidence interval
and whether the attack string passes the firewall or not. Erdödie-
t al. [19] devised a SQL injection vulnerability detection method
using Q-Learning. The environment was a web application that
implemented a Capture the Flag problem, which is a very specific
environment for vulnerability detection.

Caturano et al. [8] proposed Suggester, a reflected XSS payload
suggestion tool using RL. It suggests mutation rules for penetration
testers and requires human involvement, including for analyzing
observations, performing actions, and computing rewards. These
drawbacks impede Suggester in conducting fully automatic pene-
tration testing, which Link is able to overcome.
Attack detection with RL.Machine learning is often applied to
classify malicious payloads. Fang et al. [22] present an XSS attack
detection model by training adversarial and detection models to-
gether. Tariq et al. [68] present an XSS attack detection model using
genetic algorithms and threat intelligence to detect XSS attacks.
They attempted to address the challenge of XSS payloads having
various unforeseen patterns.

9 CONCLUSION
To the best of our knowledge, Link is the first black-boxweb scanner
using an RL agent that requires no human involvement. Link uses
RL to adapt its attack payloads to vulnerable target contexts, which
contributes to avoiding futile attack requests and decreasing false
negatives. Link demonstrates its superior efficiency in decreasing
the number of attack requests while finding more true positives and
fewer false negatives compared to those of its baseline, Wapiti. Our
experimental results demonstrate that leveraging RL for identifying
reflected XSS vulnerabilities is a promising direction for scalable
and accurate penetration testing.
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10 APPENDIX
10.1 Implementation
We implemented Link with 7K lines of code (LoC) in Python. We
built Link on top of Wapiti [66], a popular open-source web scan-
ner that has been used in many web vulnerability detection stud-
ies [15, 56]. We replaced the Wapiti module that applies a set of
fixed attack payloads with an RL agent that uses OpenAI gym [45]
and Stable baselines [28]. We further used the BeautifulSoup li-
brary [57] to parse responses to attack requests in our bug oracle.
Also, for accurate detection of JS snippets, we used pyjsparser [14].
To support open science and reproducible research, we release Link
at https://github.com/WSP-LAB/Link.

10.2 RL Actions and Observations
Actions. Table 4 describes each of the 39 actions. We describe
several actions in detail here. The 20th action prepends the dummy
string to the payload to evade filters that truncate the prefix of
user input. The 21st action prepends a closing tag to escape an
opening tag that appears immediately ahead of the injection point.
For example, if the agent selects the 21st action when it observes the
response <textarea>[payload]</textarea>, the attack manager
identifies the <textarea> tag that is the closest opening tag before
[payload] and prepends the closing tag </textarea> to the injected
payload.
Observations. Table 5 lists 47 features that the attack manager
observes. These features are categorized into five groups: payload
appearance, payload repetitiveness, reflected payload appearance,
payload context information, and attack result. The 30th feature is
the number of times that Link uses the current payload. We also
use the maximum steps in the training phase for the denominator
to provide the same impact in the testing phase as well.

10.3 RL Reward
Algorithm 2 shows how the attack manager computes an rt . It
first checks whether at enables the successful exploitation of a
reflected XSS vulnerability. If so, the reward becomes the difference
between the number of maximum steps (STEPS_PER_EPISODE) to
the current t, thereby motivating the agent to find an appropriate
attack payload as early as possible. That is, the agent is rewarded
for sending a small number of attack requests to trigger a target
vulnerability. On the other hand, Lns 7–10 decrease the reward by
one when at is the same as at−1 or when the current payload equals
the previous payload, instructing the agent to avoid the same action
and payload. In a similar vein, the attack manager assigns a negative
reward by subtracting the frequency of the current payload (Ln 12),
helping the agent learn a way of not generating a payload that the
agent has produced before.

10.4 Hyperparameter Optimization
RL algorithms and training steps.We evaluated three RL algo-
rithms for Link agents: PPO, DQN, and A2C. These algorithms
were chosen due to their prevalent applications in various do-
mains [11, 38, 42, 71]. We deployed each algorithm for Link and
examined the exponential moving average (EMA) [31] of rewards

Algorithm 2:Algorithm for computing a reward rt at a time
step t .

1 previous_payload ← Payload produced in the previous step
2 function Reward(t , st+1 , payload , f ound)
3 rt ← 0
4 if f ound then
5 rt ← ST EPS_PER_EP ISODE − t
6 // If the current action (#32) is the same with the previouse action

(#31), give a negative reward.

7 if st+1[32] == st+1[31] then
8 rt ← rt − 1
9 if payload == previous_payload then
10 rt ← rt − 1
11 // If the input payload is frequently used (#30), give a negative

reward.

12 rt ← rt − st+1[30]
13 return rt

measured over the training step. The higher the EMA is, the better
the agent performs in generating optimal actions.

For every agent except DQN, the EMA of rewards increased
continuously, becoming almost equal across agents as the number
of steps increased. In particular, we observed that the EMA for the
A2C agent converges faster than the EMA for the PPO agent. We
also noticed that a total_step value of 3.5M is the optimal point at
which the EMA of rewards for the A2C model starts to plateau.
Thus, for the evaluations in this paper, we leveraged the A2C model
trained up to a MAX_STEPS value of 3.5M.
Learning rate. We compared the EMA of rewards for each A2C
model trained with different learning rates of 0.001, 0.0005, and
0.00075. Since there were no significant differences in EMA val-
ues according to varying learning rates, we chose 0.0005, which
converges slightly faster than the others.
Discount factor. A discount factor plays a role in the stability and
convergence of deep reinforcement learning algorithms [24]. We
considered three discount factors: 0.8, 0.95, and 0.99. We observed
that the EMA of rewards for the A2C model converges faster when
the discount factor is 0.8 or 0.95 than when the discount factor is
0.99. We chose 0.95 rather than 0.8 to give more weight to future
rewards.

1 <form action="./example.php" method="get">
2 <?php
3 $input = htmlentities($_GET["go"]);
4 echo urldecode($input); ?>
5 <input type="text" name="go" value="">
6 ...
7 </form>

Figure 4: Vulnerable snippet of incorrect input sanitization
that causes a reflected XSS vulnerability.

10.5 Case Study
We investigate the findings of Link in the experiments presented
in Section 6.2 and how our RL agent contributed to uncovering the
reflected XSS bugs.

Figure 4 shows a vulnerable code snippet of incorrect input sani-
tization, causing a reflected XSS vulnerability. This PHP application
incorrectly sanitizes user input via $_GET["go"]. It attempts to
remove all script tags by invoking htmlentities() in Ln 3, which
converts special characters to their corresponding HTML entities.
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Type Category Action # Description

Generation
Basic

Payload

1 Generate the script tag payload (<script>alert(1);</script>)
2 Generate a payload with a media tag (img, video, audio, svg) (e.g., <img src=‘x’ onerror=‘alert(1);’/>)
3 Generate a payload in an event attribute (onerror, onload, onclick, onmouseover) (e.g., onerror=alert(1);)
4 Generate a palyload in an src attribute (e.g., src=‘http://attack.js’)

JS Component 5–7 Generate the JS snippet (alert(1)), the JS URL (http://attack.js), the JS pseudo protocol (javascript:alert(1))

Mutation

Prefix 8–20 Prepend a symbol from /> , " , ’ , "> , ’> , > , --> , ;} , */ , ’; , "; , enter , or dummy
21 †Prepend a closing tag for an opening tag that appears immediately ahead of the injection point

Suffix 22–24 Append <!-- , ’ , " to the end of the payload

Tag 25–27 Replace the tag with other script or media tag / Capitalize the tag / Overlap the tag string (e.g., scrscriptipt, etc.)

Attribute 28 Capitalize the attribute

JS
snippet

29 Replace the JS snippet with one of the other JS snippets (alert(1), confirm(1), prompt(1))
30 Split the JS snippet into several JS pieces (e.g., alert(1)⇒ var A="al"+"er"+"t(1);";eval(A);)

31–32 Prepend "+ / ’+ and append +" / +’ to the JS snippet (e.g., alert(1)⇒ "+alert(1)+" / ’+alert(1)+’ )
33 Put the JS snippet in onerror, and force an error with throw (e.g., alert(1)⇒ onerror=alert;throw 1)

Entire
string

34–36 Apply percent encoding / octet encoding / obfuscation with JSFuck [35]
37–39 Replace a white space with a slash / a single quote with a back quote / a parenthesis (i.e., “(” or “)”) with a back quote

† It can be incrementally combined with actions 8–20.

Table 4: Action details.

Type Category Feature # Features Range

Input
Payload

Payload
appearance

1–4 The presence of a “script” string / an “alert” string / a “(” or “)” string / a “dummy” string 0–1
5–6 The presence of an event attribute (onerror, onload, onclick, onmouseover) / a URL attribute (href, src) 0–1
7–9 The presence of a JS snippet (alert(1), confirm(1), prompt(1)) / a HTML comment / a JS comment 0–1
10–11 The presence of JS pseudo protocol (javascript:alert(1)) / a JS URL (http://attack.js) 0–1
12–14 The presence of an HTML tag / a script tag (<script>) / a media tag (<img>, <video>, <audio>, <svg>) 0–1
15–21 The presence of a single quote / a double quote / a back quote / a back slash / a bracket / enter / a closing tag 0–1
22–25 Whether it is alert(1), confirm(1), or prompt(1) / percent encoded / octet encoded / obfuscated 0–1
26–28 The presence of a capitalized tag / a capitalized attribute / an overlapped tag string (e.g., scrscriptipt, etc.) 0–1
29 The presence of a white space (e.g., <img/src=‘x’/onerror=‘alert(1)’/>) 0–1

Payload
repetitiveness

30 Payload frequency = (# of times that the current payload is used in the current episode - 1) / TRAINING_EPISODE_SIZE) [0, 1]
31-32 Action number used in the previous step / current step Action #

Response

Reflected
payload

appearance

33 The presence of a script tag or a media tag from a payload in the response -1–1
34 The presence of a JS snippet, a JS URL, or a JS pseudo protocol from a payload in the response -1–1
35 String similarity between a payload and a reflected payload in the response [0, 5]

Payload†
context

information

36 Content type of a target page (HTML, CSS, JSON) 0–3
37 The input parameter type from its default value (number, string) 0–2
38 Where the payload is injected (tag, attribute name, attribute value, URL, comment, enclosed tag content, event value) 0–7

39–40 A character symbol immediately before / after the injection point (’, ", < or >, =, :, ;) 0–6
41 Among the characters (", ’, //, /*, <, >, -), the character placed closest before the injection point 0–7
42 HTML tag type immediately before the point where the payload is injected (link, media) 0–2

43–46 Reflection of initial payload 0–1

Attack Attack Result 47 The success of an attempt 0–1
† 0 of the feature values refers to the default value that is assigned if no corresponding value is observed.

Table 5: Observation details.

Step Action # Type Payload

1 1 Request <script>alert(1);</script>

Response &lt;script&gt;alert(1);&lt;/script&gt;

2 34 Request %3Cscript%3Ealert%281%29%3B%3C/script%3E

Response <script>alert(1);</script>

Table 6: Running sequence of RL agent on one Filter Evasion
benchmark.

Unfortunately, an attacker is able to inject a URL-encoded JS pay-
load into an argument of the urldecode() function in Ln 4, thereby
eliminating the need for injecting special escape characters into an
attack payload.

Table 6 shows the sequence of actions that Link conducts against
the vulnerable snippet in Figure 4. Link starts by sending the basic

attack payload generated by action 1. Recognizing that special char-
acters are filtered or encoded, Link performs a percent-encoding
mutation, successfully triggering the vulnerability. ZAP, Wapiti,
and BW reported false negatives for this vulnerability because the
exploit payload is not included in their payload dictionaries. We
observed that Burp Suite triggers this vulnerability through 13 re-
quests. On the other hand, Link achieved the same with only five
requests including three requests that exploit initial payloads with
the help of its RL agent choosing optimal actions.
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