
AdCPG: Classifying JavaScript Code Property Graphs with
Explanations for Ad and Tracker Blocking
Changmin Lee

KAIST
Sooel Son

KAIST

ABSTRACT

Advertising and tracking service (ATS) blocking has been safeguard-
ing the privacy of millions of Internet users from privacy-invasive
tracking behaviors. Previous research has proposed using a graph
representation that models the structural relationships in loading
web resources and then conducting ATS node classification based
on this graph representation. However, these context-based ATS
classification methods suffer from (1) inconsistent classification due
to the varying context in which ATS resources are loaded and (2) a
lack of explainability of the classification results, making it difficult
to identify the code-level causes for ATS classification.

We propose AdCPG, a graph neural network (GNN) framework
tailored for ATS classification. Our approach focuses on classifying
JavaScript (JS) content rather than considering the loading con-
text of web resources. Given JS files, AdCPG leverages their code
property graphs (CPGs) and conducts graph classification on these
CPGs that model the semantic and structural information of these
JS files. To provide the explanations for ATS classification, AdCPG
highlights the JS code that contributes the most to classifying the
JS files into ATS using a GNN explainer. AdCPG achieved an ac-
curacy of 98.75% on the Tranco top-10K websites, demonstrating
high performance using only JS content. Upon deployment, AdCPG
identified 650 JS files from 500 domains that were not detected by
any ATS filter lists and previous ATS classification tools. AdCPG
plays a complementary role in identifying ATS resources while pro-
viding code-level explanations, which minimizes the engineering
effort required to validate ATS classification results.
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1 INTRODUCTION

Every day, millions of Internet users rely on advertising and track-
ing service (ATS) blocking to prevent privacy-invasive advertising
and tracking practices. AdBlock [2], a seminal ATS blocking ex-
tension, has been deployed on over 65 million users’ browsers.
Recent studies have shown that Internet users are aware of the
presence of ATS resources and generally have strong intentions to
take privacy-protective actions [9, 57].

Researchers have explored various machine learning (ML) al-
gorithms tailored for ATS classification, which range from ran-
dom forests to deep neural networks (DNNs), to develop high-
performing classification models, thereby accurately identifying
ATS resources [10, 26, 29, 31, 49, 50, 59, 62]. Recently, two stud-
ies, AdGraph [29] and WebGraph [49], proposed leveraging a
graph representation that models the hierarchical context of loading
HTML elements within a web page. They conducted node classifica-
tion using a random forest classifier on each node that represented
a network request trained upon graph node features.

However, our observation suggests that node classification based
on the hierarchical context of network requests often results in
inconsistent classification of identical JavaScript (JS) snippets that
performATS behaviors. For instance,WebGraph classified network
nodes fetching a JS snippet of serving Amazon ad content as ATS
in 56.23% of the websites embedding this JS snippet. However, it
reported the same JS snippet as Non-ATS in the remaining websites
(Section 3).

Kaizer et al. and Wu et al. focused on classifying JS content itself
rather than its loading context [31, 59]. They extracted the usages
of built-in APIs related to ATS behaviors as features. However,
their use of aggregated features makes it difficult to specify the JS
code that contributes to classifying a JS file as ATS. This difficulty
immediately exacerbates the manual engineering effort required to
validate the classification results.

To overcome these limitations of (1) inconsistent classification
and (2) a lack of explainability for ATS classification, we propose
AdCPG, an ATS classification framework that checks whether a
given JS snippet conducts ATS behaviors. The key idea of AdCPG
is to leverage the content-rich structural and semantic information
encoded in a code property graph (CPG) and to conduct graph clas-
sification on this CPG, thus addressing the first limitation. AdCPG
also applies GNNExplainer [63], a seminal explainer technique, to
highlight important CPG nodes that significantly contribute to ATS
classification, thus addressing the second limitation.

AdCPG first converts a given JS file into a CPG and then prunes
this CPG to remove unnecessary nodes and edges. AdCPG then
leverages a graph neural network (GNN) classifier to classify the
pruned CPG as either ATS or Non-ATS. Finally, AdCPG computes a
node importance map that highlights the important nodes involved
in conducting ATS behaviors.
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1 (function () {
2 var retargetUrl = window.location.href;
3 if (window.parent && window.location !== window.parent.

location) {
4 retargetUrl = window.parent.document.referrer;
5 }
6 const ticker = window.setInterval(function () {
7 if (! window.document.body) {
8 return;
9 }
10 clearInterval(ticker);
11 var pixel = document.createElement('img');
12 pixel.setAttribute('style ', 'width:1px; height :1px;');
13 pixel.src = 'https ://my.rtmark.net/img.gif?rurl=' +

encodeURIComponent(retargetUrl);
14 window.document.body.appendChild(pixel);
15 }, 500);
16 }());
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Figure 1: Exemplary ATS JS snippet and its CPG subgraph.

We evaluated the capability of AdCPG in classifying ATS scripts
by using various spatial ratios of ATS resources. When evaluating
AdCPG trained on the Tranco top-10K websites, AdCPG outper-
formed all previous approaches with respect to JS classification
across all the ATS ratios. In particular, AdCPG achieved an accu-
racy of 98.75% and an area under the ROC curve (AUC) of 0.9328
when assuming an ATS ratio of 5%.

Moreover, when we deployed AdCPG for real-world ATS identi-
fication on random samples of 10K websites from the Tranco top-
100K list, AdCPG reported 650 distinct JS files from 500 domains
thatWebGraph and existing filter lists overlooked. After analyzing
the classification explanations for these files, we discovered that the
existing filter lists and the previous ML approaches largely missed
ATS behaviors that mainly involve JS execution, such as browser
fingerprinting. These experimental results with the real-world web-
sites highlight the complementary role of AdCPG in identifying
ATS scripts with JS code-level explanations.

In summary, our contributions are as follows:
• We propose a GNN-based ATS detection framework using
JS CPGs and tailor a GNN explainer to produce classification
explanations that highlight the ATS-related JS code, which
significantly eases the manual validation effort.
• We demonstrate the superior performance of AdCPG in JS
classification over state-of-the-art ATS classification tools
by conducting a deployment study on 10K websites sampled
from the Tranco top-100K list.
• We shed light on the important and complementary role
in classifying JS content by demonstrating the shortcom-
ings of previous context-based and filter list-based detection
approaches. To support reproducible research, we release
AdCPG at https://github.com/WSP-LAB/AdCPG.

2 BACKGROUND

2.1 Code Property Graph

Yamaguchi et al. [61] proposed a comprehensive representation of
source code called a code property graph (CPG). It contains an ab-
stract syntax tree (AST), a control flow graph (CFG), and a program
dependence graph (PDG), which are unified into a graph represen-
tation. They leveraged this unified graph representation to uncover
security vulnerabilities in C applications. They devised graph tra-
versal queries that model the characteristics of vulnerabilities and
identified target paths that match these queries.

Recent studies have extended CPGs to cover JS applications. To
identify malicious browser extensions, Fass et al. [18] extended a
CPG to track suspicious data flows between external actors and
sensitive APIs in the extensions. Li et al. [36] performed a flow- and
context-sensitive static analysis on a extended CPG to detect the
vulnerabilities in Node.js applications.

Figure 1 shows a JS snippet that dynamically embeds an invis-
ible image pixel reporting the current URL of a visitor to an ATS
website. Because the visitor’s browser attaches a third-party cookie
to the web request fetching the image pixel, the ATS website is able
to track the web pages that the user has visited. The right-hand
side of the figure shows a CPG subgraph that corresponds to the JS
statements in Lines 11-13. Each CPG node in the graph represents
an AST node. The CPG nodes and the AST edges connecting these
nodes form an abstract syntax tree, which represents the syntactic
structure of the JS snippet. The CFG edges among the CPG nodes
describe the control flow that models the execution order of this JS
code. The PDG edges connect the top nodes, each of which repre-
sents a JS statement, thus denoting the data dependence between
these nodes. For instance, the blue lines in the figure denote that
the parameter pixel has been declared before its usage in the JS
statements corresponding to the connected CALL and ASSIGN nodes.

2.2 Graph Neural Networks

Graph neural networks (GNNs) have been applied to various classifi-
cation tasks, including natural language, link prediction, knowledge
graph node classification, and graph classification [22, 64, 68, 69].
Numerous GNN architectures, including graph convolutional net-
works (GCNs) [33] and graph attention networks (GATs) [56], have
been proposed, enabling various ways of encoding the semantics
and structure of a given graph.

The primary goal of a GNN is to compute the node embeddings
that capture the relationships between neighboring nodes in a given
graph. By encoding these relationships into a set of node embed-
dings, the GNN effectively encodes the overall graph structure. The
GNN takes in a graph where information is loaded into its nodes
and edges. It progressively transforms these embeddings without
changing the graph connectivity. Since the GNN does not update
the graph connectivity, the output graph is typically described us-
ing an adjacency matrix and feature vectors. The GNN updates
the embeddings of each node in the graph. These updated node
embeddings capture the evolving representation of each node based
on its interaction with the neighboring nodes.
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Message passing is a widely used technique for updating node
embeddings [20]. This process involves iteratively aggregating node
embeddings from neighboring nodes, allowing each node to gather
the information from its neighbors, which is called messages, and
update its own embedding accordingly. The GNN performs an
aggregation step in which it combines all the messages from neigh-
boring nodes. This step is typically conducted using a message
function that receives the collected messages. By stacking multiple
message-passing GNN layers, a node can progressively incorpo-
rate the messages from its neighboring nodes, enabling it to learn
and reflect the information from the entire graph. The number of
message-passing layers determines the extent to which node can
learn and propagate the information from its neighbors throughout
the graph.

For the graph classification task, a set of node embeddings are
transformed into a graph embedding, which is fed into the final clas-
sification layer, mostly a multilayer perceptron (MLP). This process
is called readout. When training a GNN model, the loss function is
cross entropy loss, which aims to minimize the differences between
the graph labels and predictions of the GNN model.

GCNs typically aggregate the information from neighbors by
summing their embeddings with equal weights. In GATs, each node
computes an attention score for each of its neighboring nodes. The
attention score represents the importance or relevance of each
neighbor in relation to the current node. This attention score is
calculated using a self-attention mechanism that takes into account
the embeddings of both the current node and its neighboring nodes.
Therefore, GNN architectures depend on various factors such as
the number of message-passing layers and the types of message
and update functions.
Explainable GNN. To provide human-understandable explana-
tions for GNN predictions, various instance-level explainers have
been proposed [41, 63, 66, 67]. A typical GNN explainer receives
a trained GNN model and an graph instance, and then computes
an explanation, which is a small subgraph of the input graph or
a subset of node features that play a decisive role in making the
prediction of the input graph.

GNNExplainer [63] is a seminal explainer method; it is trained
to place soft masks for edges and node features at the positions
of important edges and node features. GNNExplainer recasts the
problem of placing the soft masks as solving an optimization task
that maximizes mutual information between predictions and sub-
graph candidates. Since examining all possible subgraph candidates
is computationally intractable, GNNExplainer applies continuous
relaxation to obtain the variational approximation of subgraph dis-
tributions. This approach is model-agnostic, thus enabling it to be
applied to any GNN classification tasks.

3 MOTIVATION

ATS blocking has protected the privacy of millions of users. The
downloads of AdBlock in Chrome Web Store exceeds 65 million,
demonstrating the popularity and necessity of ATS blocking [2].
The current trend in blocking ATS resources has depended on
human-compiled lists of regular expressions, which non-profit or-
ganizations have managed. EasyList [12] is an exemplary filter list
that AdBlock has used for identifying ATS resources.

Table 1: Inconsistent classification results of WebGraph.

Label Script domain Consistency of WebGraph

ATS

google-analytics.com 97.13%
facebook.net 96.36%
licdn.com 94.10%

...
amazon-adsystem.com 56.23%

Non-ATS

Various parties 97.13%
google.com 87.81%
jquery.com 96.12%

...
Various parties 37.39%

Total 82.12%

AdGraph [29] and WebGraph [49] are two recent approaches
proposed for ATS classification, which leverage the graph repre-
sentations of web pages. By instrumenting the Chromium browser
or using preloaded JS libraries, they encoded the loading context
of various HTML elements in a fetched web page into a graph and
performed node classification to determine whether each node in-
volved fetching or rendering ATS web resources, such as JS files or
images. Because these context-based ML approaches are trained to
capture the commonality of ad-rendering and tracking behaviors,
they are able to detect potential false negatives that existing filter
lists have not listed. WebGraph reported an accuracy of 94.32%
among 10K sites sampled from the Alexa top-100K list, demonstrat-
ing the promising efficacy for its real-world deployment [49].

We argue that state-of-the-art ATS detection approaches, in-
cluding WebGraph, suffer from two limitations: (1) inconsistent
classification and (2) an insufficient level of explainability.
Inconsistent classification. Previous context-based approaches
use the loading context of HTML/script/storage elements initiat-
ing network requests. This context information, including degree,
centrality, and information flows regarding shared storage access,
is instrumental in classifying a network request node as ATS or
Non-ATS. However, the context information regarding diverse ATS
nodes varies across websites, often resulting in inconsistent classifi-
cation, even for the network nodes in different web graphs fetching
the identical JS snippets. This inconsistency naturally brings false
positives and negatives.

Table 1 shows inconsistent predictions of WebGraph for each
identical JS snippet from the different websites embedding the script.
Each row corresponds to a JS snippet, and the script domain column
specifies the source domain of this snippet. The consistency column
describes the portion of the websites that load the corresponding
script and share the same classification results specified in the label
column. For instance, 56.23% of network requests fetching the ATS
script from amazon-adsystem.com were classified as ATS, and the
remaining requests were classified into Non-ATS, although they
fetched the identical JS content. These experimental results shed
light on the direction of classifying JS content rather than leveraging
context information varying among different graph nodes.
Insufficient explainability. Previous JS classification [31, 59] and
context-based classification [29, 49] approaches rely on aggregated
and preprocessed features, such as nodal degree, URL length, and
built-in API invocation. Therefore, obtaining the explanation for a
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Figure 2: Overview of AdCPG.

prediction result has resorted to computing a feature importance
map. Meanwhile, it remains elusive to pinpoint the code-level root
causes of the computed prediction. This naturally entails difficul-
ties for domain experts in validating the classification results (i.e.,
postmortem analysis); they need to further identify the code-level
proofs for ATS behaviors.

For instance, assume that we validate an ATS prediction thatWe-
bGraph made on the network node fetching the script in Figure 1.
Since WebGraph leverages a random forest classifier, we can com-
pute a feature importance map to highlight the important features
using TreeInterpreter [54]. Previous research showed that aver-
age degree connectivity is a key feature for ATS classification [29].
However, the value of this feature provides little information to
validate the ATS classification. It is difficult to explicitly derive the
code-level ATS behaviors from this feature attribution.

To overcome these limitations, we propose conducting GNN-
based graph classification on a CPG that represents a given JS
snippet and leveraging a GNN explainer to pinpoint the CPG nodes
that contribute to classifying the CPG into ATS. By classifying a
CPG that reflects a given script rather than its loading context, we
address the first limitation, rendering AdCPG as a complementary
method for detecting ATS resources. Moreover, classifying a CPG
using the GNN model and leveraging the GNN explainer enables
one to pinpoint the specific JS code that conducts ATS behaviors,
thus addressing the second limitation.

3.1 Technical Challenges

Building a performant and explainable CPG classification frame-
work entails two technical challenges: (1) CPG feature engineering
and (2) highlighting the important CPG nodes that contribute the
most to ATS classification.
CPG feature engineering. Although a CPG is an effective tool
for capturing syntactic and semantic information for bug finding, it
was not originally designed to be fed into a GNN model. Therefore,
CPGs should be tailored for graph classification, thus extracting
the necessary features for accurate and efficient classification.

Specifically, a CPG classification framework using a GNN should
prune unnecessary CPG nodes and edges while preserving their
underlying semantics. By design, CPGs contain a variety of node
and edge types that may not be relevant for ATS classification. Even
worse, such unnecessary components can adversely affect perfor-
mance by increasing the distances among important CPG nodes

that contain ATS-related JS code. It is known that GNNs perform
poorly when prediction tasks depend on long-range interaction
between distant graph nodes because prolonged node distances
impede information propagation along the paths between graph
nodes [3]. Furthermore, reducing CPG sizes boosts shortening the
training and testing time by cutting down the computational re-
sources in obtaining node embeddings and filling out more graph
instances in a single batch.

To address these challenges, we suggest a CPG pruning algo-
rithm that removes function subgraphs that invoke no built-in APIs
related to ATS behaviors and prunes intermediate nodes while
preserving the semantics of CPGs (Section 4.2).
Explainable classification.Given a CPG, it is not straightforward
to pinpoint the important nodes that contribute the most to classi-
fying the CPG into ATS. Extracting arbitrary features from the CPG
may break the correspondence between source code and classifica-
tion features. To preserve this mapping nature, we leverage a GNN
designed to learn CPG node embeddings. In addition, by leveraging
both the GNN and the GNN explainer, it becomes straightforward
to locate the JS code that contributes to ATS classification. This
enables one to examine the code areas where web tracking and
advertising behaviors are highly likely to occur (Section 5.3).

4 DESIGN

4.1 Overview

We recast the ATS classification problem for a given JS snippet as a
graph classification task. Figure 2 describes the overall workflow of
AdCPG. Given a JS snippet,AdCPG conducts three steps to compute
a prediction and its corresponding explanation, highlighting the
important CPG nodes contributing to the ATS classification.

AdCPG beginswith a given JS file, typically fetched from theWeb.
The first phase involves converting the JS file into a CPG and then
processing the CPG by pruning unnecessary nodes and edges for
precise and efficient classification. In the second phase, this pruned
CPG is fed into a GNN classifier, which emits a prediction vector.
The last phase of AdCPG involves leveraging a GNN explainer to
highlight the CPG nodes that are highly attributed to the prediction.

4.2 Phase I: Building CPGs

Given a list of websites, AdCPG visits each website and stores each
fetched JS script into a JS file. AdCPG then converts each JS file
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Table 2: CPG node and edge types that AdCPG uses for com-

puting CPGs.

Type name w/o Pruning w/ Pruning

Node

BLOCK a ·
CALL a a

CONTROL_STRUCTURE a ·
FIELD_IDENTIFIER a ·
IDENTIFIER a a

LITERAL a a

LOCAL a a

METHOD a a

METHOD_PARAMETER_IN a a

METHOD_REF a ·
RETURN a a

Edge

AST a a

CFG a a

PDG a a

REF a ·

into a CPG using Joern [30]. We revised Joern to consider the list
of chosen node and edge types in Table 2. The table shows the CPG
node and edge types that AdCPG uses to compose CPGs before
(i.e., w/o) and after (i.e., w/ ) CPG pruning. AdCPG considers control
flow (e.g., CFG), program dependence (e.g., PDG), and reference (e.g.,
REF) edges, but not call edges, thus converting each JS file into a set
of subgraphs; each subgraph contains the intra-procedural seman-
tic and syntactic information of a JS function block. We designed
AdCPG to capture the structural and semantic information of a
given JS file, thus preserving the semantics of the JS functionalities
implemented in this file.
CPG features. We leveraged Pytorch Geometric [19] to convert a
given CPG into a matrix representation. AdCPG encodes the CPG
into a node matrix, each row of which represents a CPG node. The
size of each row (i.e., the dimension of a node representation) is
333, which is a concatenation of three vector types: TYPE, API, and
STR. Therefore, each node has a corresponding vector that encodes
three kinds of CPG node information, as shown in Table 3.

A TYPE vector represents a CPG node type labeled by Joern.
Specifically, given a CPG node, the TYPE vector is a one-hot vector
that encodes its type among seven pruned CPG node types.

An API vector indicates whether a set of built-in objects or in-
terfaces is referenced. The dimension of the API vector is 322, each
element of which is 0 or 1, indicating whether the corresponding
properties and methods appear in the CPG node. To identify a set
of APIs that AdCPG uses to compute API vectors, we investigated
MDN Web Docs [11], the ECMAScript 2023 Language Specifica-
tion [52], and the DOM Standard [53]. We selected 861 methods,
properties, and built-in objects listed in these specifications. En-
coding these APIs as a one-hot vector is ineffective, considering
that several APIs exhibit similar functionalities. Therefore, we clus-
tered APIs into 322 groups according to their functionalities. We
excluded some APIs with common names (e.g., length) and trans-
ferred APIs to other groups if necessary (e.g., Location.toString
is more suitable for the String group than for the Location group).

Lastly, an STR vector is a four-dimensional vector that indicates
the usage of HTML tag names, cookie attributes, JS events, and

Table 3: Node features used in AdCPG.

Feature Component Size Type Description

TYPE Node type 7 All CALL, IDENTIFIER, LITERAL, LOCAL,
METHOD, METHOD_PARAMETER_IN, RETURN

API

Identifier 16 LOCAL Objects used as identifiers
Global 7

CALL

Global object
Fundamental 2 Object, Function objects

Utility 5 Date, String, RegExp, Array, JSON
objects

Event 1 Event, EventTarget interfaces
Node 187 Node, Document, Element interfaces

Window 88 Window object
Navigator 1 Navigator object
Screen 1 Screen interface
Storage 1 Storage interface
URL 3 Location, History, URL interfaces

Request 1 XMLHttpRequest interface

Performance 1 Performance, PerformanceTiming
interfaces

Observer 1 MutationObserver, IntersectionObserver
interfaces

HTML 7 HTMLElement interfaces

STR

Tag 1

LITERAL

HTML element tag names
Cookie 1 Cookie attribute names
Event 1 Event type names

Resource 1 webRequest.ResourceType

Total 333

resources in the CPG node. When a node contains a string constant
with one of nine tag names, eight property names in cookie at-
tributes, 34 event type names, or 20 resource type names specifying
webRequest.ResourceType, AdCPG sets 1 for the corresponding
element in the STR vector; otherwise, AdCPG sets 0.
CPG pruning.AdCPG reconstructs a preprocessed CPG by remov-
ing unnecessary nodes and edges. For this, AdCPG intentionally
deletes intermediate nodes to decrease the number of hops between
nodes while preserving the semantics of JS files.

We deployed two deletion strategies: (1) pruning all CPG nodes
in a JS function that does not invoke any built-in APIs used for
computing API vectors and (2) deleting intermediate nodes that
do not change the semantics of the CPG. These deletion strategies
enabled AdCPG to reduce the number of nodes and edges by 47%
and 30% on average, respectively, while boosting its performance.
The detailed effects of CPG pruning is described are Section 5.4.

Algorithm 1 describes the graph reconstruction process. Lines 1-
6 describe the pruning process of function subgraphs that do not
invoke any APIs in Table 3. A JS function is represented as a subtree
of which the root has the node type of METHOD. If the function calls
no predefined built-in APIs,AdCPG removes all nodes in the subtree
except the root node. Given target nodes and a CPG, RemoveNodes
deletes the target nodes and all the edges connected to those nodes
in the CPG. Lines 7-17 illustrate the process of deleting unnecessary
intermediate nodes. TransferEdges takes a target node and its child
or parent node, along with a CPG, as inputs. It then reconstructs
the CPG by transferring the incoming and outgoing edges of the
target node to its child or parent node, depending on the target
node type. After transferring the edges, the target node and the
self-loops of the child or parent node are removed from the CPG.
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In short, AdCPG prunes intermediate nodes that have neighboring
nodes corresponding to the same code tokens or that involve no
predefined built-in API calls.

Specifically, we designed AdCPG to prune CPG nodes of which
types are among BLOCK, CONTROL_STRUCTURE, FIELD_IDENTIFIER,
IDENTIFIER, and METHOD_REF. For BLOCK and CONTROL_STRUCTURE
nodes, which only indicate the presence of code blocks, AdCPG
removes those nodes and uses their parent nodes connected through
AST edges. AdCPG also replaces FIELD_IDENTIFIER nodes with
their parents connected through AST edges, which have the node
type of CALL. For IDENTIFIER nodes, AdCPG prunes these nodes
and uses their parents, which have the node type of either LOCAL
or METHOD_PARAMETER_IN, connected through REF edges. Similarly,
METHOD_REF nodes are substituted by METHOD nodes that are linked
to these nodes through REF edges.

We note that FIELD_IDENTIFIER, IDENTIFIER, and METHOD_REF
nodes are replaced with their corresponding child and parent nodes.
When performing this pruning step, AdCPG also makes the each
replaced CPG node to indicate a code-level JS token to indicate a
literal or an identifier that represents a function name, function
parameter, field accessor, or a local variable. This pruning proce-
dure with mapping code-level identifiers and literals facilitates the
explanation generation in Section 4.4.

4.3 Phase II: Classifying CPGs

Given a pruned CPG from the previous phase (Section 4.2), Ad-
CPG classifies this CPG as ATS or Non-ATS. AdCPG consists of
three DNNs: node embedding networks, readout networks, and
classification networks.

The node embedding networks consist of four layers; each layer
starts with a graph convolutional layer, which is followed by a
batch normalization layer and an activation layer except for the last
layer. We used GATv2 [7] for the convolutional layer, and applied
PReLU [23] for the activation layer. The dimension of hidden states
is 16, which exhibited the best performance.

We designed AdCPG to densely connect all the layers by con-
catenating the output embeddings of all previous layers. This ar-
chitecture enables each layer to access the features of all previous
layers, offering feature reuses and lowering the number of model
parameters, which enhances the model capacity to generalize to
unknown data. It also mitigates the vanishing gradient issue by
allowing gradients to flow across the entire networks [25].

For the readout networks, AdCPG conducts sum aggregation
to convert node embeddings into a graph embedding. AdCPG re-
ceives node embeddings from the node embedding networks as
inputs and sums all node features across the node dimension. The
readout networks emit a 64-dimensional vector, which goes into
the classification networks.

The classification networks produce a final classification result.
We used a two-layer MLP followed by the softmax layer, which
produces a prediction vector that shows the probabilities for ATS
and Non-ATS, respectively.

4.4 Phase III: Generating Explanations

To generate an explanation, AdCPG takes a given CPG and the
GNN classifier as inputs. It then computes a node importance map

Algorithm 1 Pruning CPGs.
Input: CPG 𝐺 = (𝑉 , 𝐸, 𝑋,𝑇 ); 𝑉 in DFS reverse pre-ordering of

AST root; API feature vector 𝑥𝑣 ∈ 𝑋 ; Node type 𝑡𝑣 ∈ 𝑇 ;
Output: Pruned CPG 𝐺

1: for 𝑣 ∈ 𝑉 do

2: if 𝑡𝑣 ∈ {METHOD} and𝑀𝑎𝑥 (𝑥𝑠 ) = 0,∀𝑠 ∈ 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 (𝑣) then
3: ⊲ Remove a given set of nodes
4: 𝐺 ← 𝑅𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒𝑠 (𝐺, 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 (𝑣) − {𝑣})
5: end if

6: end for

7: for 𝑣 ∈ 𝑉 do

8: if 𝑡𝑣 ∈ {IDENTIFIER, METHOD_REF} then
9: ⊲ Transfer the edges from a node v to its child connected

through the REF edge
10: 𝐺 ← 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐸𝑑𝑔𝑒𝑠 (𝐺, 𝑣,𝐶ℎ𝑖𝑙𝑑 (𝑣,REF))
11: 𝐺 ← 𝑅𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒𝑠 (𝐺, {𝑣})
12: else if 𝑡𝑣 ∈ {BLOCK, CONTROL_STRUCTURE,

FIELD_IDENTIFIER} then
13: ⊲ Transfer the edges from a node v to its parent connected

through the AST edge
14: 𝐺 ← 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝐸𝑑𝑔𝑒𝑠 (𝐺, 𝑣, 𝑃𝑎𝑟𝑒𝑛𝑡 (𝑣,AST))
15: 𝐺 ← 𝑅𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒𝑠 (𝐺, {𝑣})
16: end if

17: end for

in which CPG nodes are sorted according to their importance in
computing the prediction of the CPG via a GNN explainer. Given
a threshold for the proportion of important nodes to highlight,
AdCPG produces a CPG subgraph that consists of nodes within the
corresponding proportion. For visualization, AdCPG focuses on
CPG nodes corresponding to the AST node types of identifier and
literal. Each highly influential CPG node holds its location in the JS
snippet and a JS code token that maps to a literal or an identifier.
Therefore, the identified important CPG nodes can be highlighted
in the script, computing an intuitive source code-level explanation.

We applied GNNExplainer [63], which is a relatively lightweight
explainer, to generate explanations for the computed predictions.
Note that a typical JS CPG consists of thousands of nodes and
edges. Computing explanations thus requires a huge amount of
computational resources. SubgraphX [67], a seminal GNN explainer,
requires a long time to compute its explanation because it explores
a large number of subgraphs with the Monte Carlo tree search
algorithm. A large CPG size exponentially hinders its practical use
because of the large search space [66]. PGExplainer [41] can be an
alternative explainer, which requires training on multiple instances
to compute explanations. To avoid such an additional training stage,
we selected GNNExplainer, which does not require an auxiliary
dataset.

4.5 Implementation

We implemented AdCPG in Python. To build a crawler, we lever-
aged Selenium Wire [58]. AdCPG uses Joern [30] to extract CPGs
from JS files. To convert CPGs into graphs and build a GNN clas-
sifier as well as its explainer, AdCPG leverages Pytorch [47] and
Pytorch Geometric [19].
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Table 4: Evaluation of AdCPG against previous ATS methods in JS classification. The best results are marked in bold.

Classifier

ATS 5% ATS 10% ATS 25% ATS 50%

Accuracy Precision Recall AUC Accuracy Precision Recall AUC Accuracy Precision Recall AUC Accuracy Precision Recall AUC

DMTrackerDetector 98.04% 93.27% 66.09% 0.9066 96.81% 95.93% 71.08% 0.9221 94.12% 94.15% 81.65% 0.9481 91.95% 95.41% 88.15% 0.9569
Kaizer et al. 97.72% 89.17% 63.08% 0.8766 95.41% 86.80% 64.63% 0.9036 89.75% 83.51% 73.67% 0.9075 83.39% 85.70% 80.23% 0.9039
AdGraph 96.01% 64.17% 26.67% 0.8735 92.24% 74.73% 38.57% 0.8714 86.19% 77.18% 63.81% 0.8814 80.87% 81.35% 80.21% 0.8793
WebGraph 95.91% 62.50% 13.33% 0.8207 92.19% 81.09% 29.52% 0.9186 87.34% 82.60% 62.70% 0.9021 83.25% 83.62% 82.75% 0.9092
AdCPG 98.75% 98.18% 75.83% 0.9328 97.56% 96.53% 78.46% 0.9476 95.10% 95.14% 84.62% 0.9495 93.57% 96.34% 90.63% 0.9649
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Figure 3: ROC curves for five classifiers: AdCPG, DMTrackerDetector, Kaizer et al. , AdGraph, and WebGraph.

5 EVALUATION

We evaluated the classification performance of AdCPG (Section 5.2)
and its explainability (Section 5.3).We further conducted an ablation
study to demonstrate the efficacy of each technical component with
respect to precise classification, and examined the robustness of
AdCPG against JS obfuscation (Section 5.5).

5.1 Experimental Setup

We crawled websites from the Tranco top-10K list, compiling the
evaluation dataset. Each website was loaded with a timeout of
60 seconds, which involved fetching JS snippets and storing each
snippet in a separate JS file. We collected a total of 101,278 JS files,
each of which has the source URL from which it was fetched.

We then performed deduplication on these files, reducing the
number of crawled JS files to 48,307 distinct files. To accommodate
minor differences among JS files, we leveraged the AST representa-
tions of the files and grouped identical JS files by comparing the
AST structures via Esprima [17] and Escodegen [16].

To label the JS files, we used four widely-used filter lists: Ea-
syList [12], EasyPrivacy [13], Fanboy’s Annoyance List [38], and
Peter Lowe’s List [39]. These filter lists contain regular expressions
that can be matched against the source URLs of each JS file. We
labeled a JS file as ATS when the source URL of the file matched the
regular expressions in at least two filter lists. When there was no
matching in any of the filter lists, we labeled the file as Non-ATS.
Note that public filter lists can contain incorrect ATS filter rules
because of crowd-sourced reports [28, 51]. Ill-intent advertisers
have even registered fake advertising domains to undermine the in-
tegrity and performance of filter lists [37]. To establish trustworthy
ground truth, we only considered only ATS scripts that matched
regular expressions in at least two filter lists. Table 5 summarizes
the statistics of the dataset on which AdCPG was evaluated.

Table 5: Ground truth data for training and testing AdCPG.

Label # Distinct JS files # Crawled JS files Duplication ratio

ATS 2,726 20,539 7.53
Non-ATS 45,581 80,739 1.77

Total 48,307 101,278 2.10

To ensure unbiased training and testing, we evaluated AdCPG
using various spatial ratios of ATS resources, as Pendlebury et al.
suggested [45]. We assumed the ratio of ATS resources on the Web
is either 5%, 10%, 25%, or 50%. For each spatial ratio, we made each
data fold to reflect this ratio when conducting cross validation.

We conducted stratified 10-fold cross validation and reported
the average value for accuracy, precision, recall, and AUC met-
rics. When training the GNN classifier, we used the AdamW opti-
mizer [40] with a learning rate of 0.001, a weight decay of 0.01, and
a batch size of 16. We adopted an early stopping with a patience
of 50 epochs. For the GNN explainer, we computed a node feature
map for 500 epochs with a learning rate of 0.001.

5.2 Comparison to Previous Works

We compared the performance of AdCPG against two previous
JS classification methods, namely DMTrackerDetector [59] and
Kaizer et al. [31]. We also included two previous approaches using
web graphs, AdGraph [29] and WebGraph [49].

DMTrackerDetector is an ATS detection tool that classifies a
given JS snippet using the presence of built-in JS API calls. Kaizer -
et al. developed an ML classifier trained upon features extracted
fromHTTP headers and a limited set of JS properties.AdGraph and
WebGraph are designed to identify various types of ATS elements
within aweb page, including network requests that fetch JS snippets.
We trained and tested these models on network request nodes
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Table 6: Categories of ATS behaviors.

Category Description

Cookie/Storage
Read or write data into browser storage (e.g., cookie, localStorage,
sessionStorage, indexedDB)

Web beacons Insert invisible or hidden HTML elements (e.g., image, iframe)

Fingerprinting Perform browser fingerprinting

URL redirection Redirect web pages

User activity
tracking Record user activities using non built-in functions

Resource requests Send requests for ATS resources or load cross-domain ATS
resources

Displaying ads Load visible images, iframes, or style sheets

fetching JS snippets, which enabled us to assess the capability of
identifying JS files originating from ATS hosts.

Table 4 and Figure 3 provide a comprehensive overview of the
performance of AdCPG and other previous classification methods.
The experimental results clearly indicate thatAdCPG outperformed
the other methods across all ATS spatial ratios. Assuming an ATS
ratio of 5% in the underlying distribution, AdCPG attained an ac-
curacy of 98.75% and an AUC of 0.9328, demonstrating high per-
formance compared with all previous methods. We emphasize that
AdCPG outperformed the other JS classification works, which also
highlights the unique capability of AdCPG in leveraging content-
rich CPG information rather than relying solely on API access and
HTTP header features.

Note that the performance of the previous methods may dif-
fer from those metrics outlined in their papers. We conducted a
thorough deduplication step and explored various spatial ratios to
minimize any bias in classifying JS snippets (Section 5.1), which
may affect the classification performance. In particular, AdGraph
and WebGraph exhibited the performance drops in JS classifica-
tion. When following the original setups of WebGraph [49], where
the model is trained on network requests of all resource types re-
gardless of ATS ratios and deduplication, WebGraph exhibited an
accuracy of 94.78%, a precision of 90.67%, and a recall of 84.59%.
However, when considering only the JS classification results, its
performance decreased to an accuracy of 91.84%, a precision of
87.70%, and a recall of 73.82%. This implies that the performance
of WebGraph can be aided by the classification results of other
resource types besides JavaScript.

We observed that JS classification methods, including AdCPG,
tended to perform well, especially when the ATS ratios were rel-
atively low. In particular, AdCPG demonstrated its robustness in
recall and AUC metrics when the ATS ratio was low. However, it
becomes challenging to extract distinguishable patterns from the
loading context of ATS scripts when an ATS ratio is low, which
makes context-based classification methods perform less effectively.
In contrast, JS snippets provide information-rich features evenwhen
the ATS ratio is relatively low, contributing to increasing the per-
formance of the JS classification methods.

These experimental results necessitate the classification of JS
snippets, which play a complementary role in filling in loopholes
that the context-based classification approaches, including Ad-
Graph and WebGraph, may introduce.

0 10 20 30 40 50 60

Unknown

Displaying ads

Resource requests

User activity tracking

URL redirection

Fingerprinting

Web beacons

Cookie/Storage

Figure 4: Frequency of observed explanations for each ATS

category.

Error analysis. To examine false positives (FPs) and false nega-
tives (FNs) of AdCPG, we established ATS categories, as shown
in Table 6. We then manually analyzed the JS files of those FPs
and FNs, checking whether they matched any of the categories in
the table. If so, we labeled them ATS. We randomly sampled 50
files from each of the FPs and the FNs, analyzing a total of 100 JS
snippets.

Out of the 50 FPs, 18 (i.e., 36%) were actually true positives.
These cases were mislabeled because of FNs in the filter lists that
constituted the ground truth of AdCPG. The remaining 32 re-
ported FPs were genuine FPs; they exhibited abnormal behaviors,
such as manipulating cookies while invoking numerous JS built-
in functions involving RegExp as well as referencing properties
like Element.clientWidth and Element.clientHeight, which
are often observed in ATS scripts.

Among the 50 sampled FNs, seven (i.e., 14%) were actually Non-
ATS scripts; we were unable to locate ATS-related behaviors in
these files. The remaining ones were genuine FNs. The dominant
root causes for the FNs were bootstrapping JS snippets that are
responsible for preparingATS behaviors without explicitly invoking
built-in APIs. AdCPG struggles to effectively capture the subtle
indicators associated with these snippets.

5.3 Explainability

To showcase the explainability of AdCPG, we conducted a manual
analysis of AdCPG explanations for 100 randomly selected JS files
classified as ATS. AdCPG highlights the CPG nodes that represent
JS tokens, specifically those that significantly contribute to the ATS
classification. We examined the highlighted code and categorized
their behaviors into seven distinct categories, as outlined in Table 6.
In cases where we were unable to determine the exact semantics of
JS scripts, we categorized them as Unknown.

Figure 4 shows the analysis results of the sampled 100 JS files,
representing a sample distribution of ATS behaviors. 56 of them
were found to exhibit ATS behaviors associated with Cookie/Storage
operations, such as setting cookie identifiers or cookie syncing.
For example, AdCPG identified JS snippets that set the value of
the SameSite cookie attribute to None, which attaches cookies to
cross-origin requests [32]. The next most common category of ATS
behaviors was the placement of Web beacons. Web beacons are
widely used tracking methods that insert invisible HTML elements,
reporting the current URL of visitors to ATS hosts.
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1 (function () {
2 var retargetUrl = window.location.href;
3 if (window.parent && window.location !== window.parent.

location) {
4 retargetUrl = window.parent.document.referrer;
5 }
6 const ticker = window.setInterval(function () {
7 if (! window.document.body) {
8 return;
9 }
10 clearInterval(ticker);
11 var pixel = document.createElement('img');
12 pixel.setAttribute('style ', 'width:1px; height :1px;');
13 pixel.src = 'https://my.rtmark.net/img.gif?rurl=' +

encodeURIComponent(retargetUrl);
14 window.document.body.appendChild(pixel);
15 }, 500);
16 }());

Listing 1: Explanation on the JS snippet categorized as Web
beacons.

The source code-level explanations that AdCPG produces facil-
itate the analysis and validation of ATS behaviors in JS files, as
Figure 4 shows, which is the core strength of AdCPG. Note that
WebGraph and DMTrackerDetector produce no code-level ex-
planations for their ATS classifications. Siby et al. [49] used TreeIn-
terpreter [54], which can be applied to decision tree-based classi-
fiers, to identify the most contributing features for a given predic-
tion. They computed a feature importance map for each prediction,
which can be considered as an explanation of WebGraph. However,
identifying important features and their values has a limited impact
on validating predictions, as mentioned in Section 3. DMTrack-
erDetector is not different because it uses aggregated statistical
features that cannot be mapped to JS code.

In contrast, AdCPG explicitly highlights important JS code areas
in a given JS file. We present case studies of AdCPG explanations
in the following. The red boxes indicate the JS code corresponding
to CPG nodes that are listed in the top 20% of important nodes. The
orange ones correspond to nodes listed between the top 20% and
40% of important nodes in the ATS classification.
Case study 1: Web beacons. A web beacon is commonly used
to track user accesses and interactions with web content [6]. An
exemplary web beacon is shown in Listing 1, accompanied by an
explanation generated by AdCPG. AdCPG highlights specific JS
code that involves appending an invisible image pixel with its source
attribute pointing to a third-party domain. The execution of this
code triggers a web request to rtmark.net containing the current
URL stored in the parameter retargetUrl. Note that rtmark.net is
reported as a suspicious domain that performs malvertising [34, 60].

SinceWebGraph supports computing a feature importance map,
we computed explanations for network request nodes fetching
this JS snippet. The explanations pointed out that average degree
connectivity is one of the important features in ATS classification.
However, this feature value itself provide little information about
ATS behaviors. One needs to know the distributions of this feature
for ATS and Non-ATS. A previous study revealed that ATS nodes
tend to have lower average degree connectivity than Non-ATS nodes;
ATS nodes stand apart from other nodes in a website because they
only interact with ATS content which is a small portion of the entire
website [29]. However, it is still not straightforward to validate this
prediction solely using this feature value.

1 function Fingerprint2(a) {
2 this.options = this.extend(a, {
3 detectScreenOrientation: !0
4 });
5 ...
6 };
7 ...
8 Fingerprint2.prototype = {
9 getUserAgent: function () {
10 return navigator.userAgent;
11 },
12 getScreenResolution: function () {
13 var c = this.options.detectScreenOrientation ? [screen.

height, screen.width] : null;
14 ...
15 },
16 hasSessionStorage: function () {
17 return !!window.sessionStorage;
18 },
19 ...
20 };

Listing 2: Explanation on the JS snippet categorized as

Fingerprinting.

In the case of DMTrackerDetector, we revealed that the API
usages of Document.referrer and Node.appendChild were the
important features in classifying this JS snippet into ATS. Nev-
ertheless, knowing the existence of these APIs does not always
indicate the presence of web beacons because such built-in APIs
are often used in Non-ATS scripts. On the other hand, from the
explanation produced by AdCPG, one can confirm that the return
value of Document.referrer, which is stored in the parameter
retargetUrl, flows into Node.appendChild through the parame-
ter pixel, aiding in validating the existence of a web beacon.
Case study 2: Fingerprinting. Fingerprinting refers to a tech-
nique used to collect users’ device or browser information to com-
pute a distinctive fingerprint for each individual [5, 14, 27, 35].
Listing 2 presents a JS snippet that performs browser fingerprint-
ing, which AdCPG identified. It collects various browser infor-
mation such as user agent, screen resolution, and the presence
of session storage using APIs including Navigator.userAgent,
Screen.height, and Window.sessionStorage.AdCPG highlights
the function identifier Fingerprint2, which is also a strong indi-
cation of ATS. Note that AdCPG does not leverage any explicit
ATS-related keywords, such as ads, tracking, fingerprint, or
banner, in the node features. This indirectly shows that AdCPG
learns the structural characteristics of the ATS JS code, and that the
explainer uncovers what the model learns.

We emphasize that previous context-based approaches are un-
able to provide explicit code-level explanations, especially in the
case of fingerprinting. AdGraph andWebGraph cannot identify
fingerprinting-related behaviors because such ATS behaviors do
not appear in a graph representation that captures the loading con-
text of web resources, not internal interactions of JS API calls and
their data flows.

In summary, AdCPG provides source code-level explanations of
ATS classification compared to previous methods. We argue that
this explanation capability highly alleviates the manual engineering
effort of validating ATS classification results, especially for security
operators who manage ATS filter lists, such as EasyList and Peter
Lowe’s List.
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Table 7: CPG composition and classification performance

differences according to CPG pruning.

Metric w/o Pruning w/ Pruning Differences

Composition

# Nodes 36,911 19,715 -46.59%
# Edges 139,465 97,685 -29.96%

AST height 26 10 -61.54%

Performance

Accuracy 90.74% 93.57% +2.83%p
Precision 95.07% 96.34% +1.27%p
Recall 85.92% 90.63% +4.71%p
AUC 0.9604 0.9649 +0.0045
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Figure 5: CDF for ratios of training time decrease according

to CPG pruning.

5.4 Ablation Study

We conducted an ablation study to measure the efficacy of each
technical component with respect to the performance of AdCPG.
CPGpruning. To test the impact of CPG pruning, wemeasured the
classification performance and training time differences according
to CPG pruning. Table 7 shows the comparisons of CPG composition
and classification performance of AdCPG between without and
with CPG pruning. The CPG pruning step significantly decreased
the overall graph size; the number of nodes and edges decreased
by 46.59% and 29.96%, respectively.

The main purpose of CPG pruning is to reduce the distances
between nodes so that node embedding information efficiently
propagates through close neighbors via message-passing layers.
After pruning, the AST height, which represents the maximum
node distance in the CPG, decreased by 61.54%. At the same time,
we observed an overall boost in performance, especially in the recall
that increased by 4.71%p with CPG pruning.

Moreover, CPG pruning reduced the training time of AdCPG.
Figure 5 shows a cumulative distribution function (CDF) for training
time decrease ratios after CPG pruning. The training time was mea-
sured when the batch size was 1, where each batch corresponded
to a single CPG. The training time declined by 15.5% on average
when CPG pruning was applied to CPGs, which can be attributed to
the reduced time for computing node embeddings of each CPG. In
addition, considering that the number of nodes decreased by 46.59%,
the batch size can be nearly doubled, which further decreased the
training time.
Node feature. Figure 6 shows the performance differences after
redacting specific feature types in each CPG node. We measured
the differences assuming that the underlying ATS ratio is 50%. Note
that the overall performance metrics decreased after each node
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Figure 6: Performance differences according to the exclu-

sion of each node feature type.

Table 8: Robustness of AdCPG against JS obfuscation.

Obfuscation technique Recall Semantics modification

Minification 100.00% %

Variable renaming 100.00% %

Control flow flattening 35.91% !

Dead code injection 30.42% !

feature type was redacted. These experimental results demonstrate
that each feature type contributed to boosting overall performance.
We observed that removing API features in CPG nodes significantly
degraded the performance, decreasing the recall by 5.36%p.

5.5 Robustness

We evaluated the robustness of AdCPG in classifying obfuscated
JS files. We classified obfuscated versions of 2,186 true positives
from Section 5.2, varying the levels of obfuscation using JavaScript
Obfuscator [44]. Table 8 shows the classification results of the ob-
fuscated ATS scripts. When applying code minification and variable
renaming as obfuscation techniques, AdCPG classified all scripts
as ATS, achieving a recall of 100%. Because AdCPG leverages a
CPG that has AST representations, it is robust to code structure
changes. However, when faced with control flow flattening and
dead code injection, AdCPG attained recall rates of 35.91% and
30.42%, respectively. These obfuscation techniques significantly
alter the content of a given JS file, increasing the distances between
CPG nodes by inserting meaningless intermediate nodes, degrading
the performance of the GNN classifier.

It is worth noting that we did not observed heavily obfuscated
ATS JS snippets detected by AdCPG or WebGraph. Heavily obfus-
cated JS files bring additional latencies and overheads in loading
web pages, resulting in an adoption rate for heavy obfuscation of
below 1% [43]. Furthermore, deploying heavily obfuscated ATS
scripts provides a strong indicator for blocking such obfuscated
third-party scripts, which a separate JS classifier can effectively
detect.

AdCPG is robust to adversarial attacks [49, 70] that manipu-
late web page structures or URL components on a webpage. This
resilience stems from AdCPG ’s focus on classifying JS content
rather than its hierarchical loading context. However, achieving
robustness against adversarial attacks that perturb a JS snippet
while preserving its semantics requires further research. We leave
this for future work.
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Table 9: Top-20 JS snippets consistently classified as ATS by AdCPG but not by WebGraph.

Script domain Organization Industry sector

Explanation

# JS files
Block rate of

WebGraph

Cook
ie/Sto

rage

Web be
acon

s

Finge
rprin

ting

URL
redir

ectio
n

User
activ

ity tr
ackin

g

Resou
rce re

ques
ts

Disp
layin

g ads

twitter.com Twitter Social media · a · · · a a 65 32.31%
twitter.com Twitter Social media · · · · a · · 60 36.67%

Various parties - - · · · · a · · 47 6.38%
google.com Google Advertising · a · · · · · 45 2.22%

hsappstatic.net HubSpot Marketing · · a · a a · 27 0.00%
google.com Google Advertising · · · · a · · 24 20.83%

Various parties - - a a a · · · · 21 9.52%
usercentrics.eu Usercentrics Software a · · · · · · 19 42.11%
Various parties - - · · · · a · · 15 20.00%

concert.io Vox Media Advertising · · · · a · a 13 0.00%
yastatic.net Yandex Search engine · · · · a a a 11 27.27%

speedcurve.com SpeedCurve Software · a · · · · · 11 36.36%
wistia.com Wistia Marketing · a a · · · a 10 20.00%
tildacdn.com Tilda Software · a · · · · · 9 11.11%
Various parties - - · · · · a · a 9 0.00%
cookielaw.org OneTrust Software a a · · · · · 7 42.86%
Various parties - - · a · · a · · 7 14.29%

paypalobjects.com PayPal Business · · · · a · a 7 14.29%
paypalobjects.com PayPal Business · · · · a · · 7 0.00%

baidu.com Baidu Internet · a · · · · a 5 20.00%

6 DEPLOYMENT

We conducted a deployment study to assess the effectiveness of
AdCPG in identifying real-world JS snippets that engage in ATS
behaviors. In addition, we deployed WebGraph [49] to contrast
the advantages that AdCPG offers.
Deployment models. To test the classifiers on random samples
of 10K websites from the Tranco top-100K list, we deployed the fol-
lowing models trained on the Tranco top-10K websites. For AdCPG,
we used the model from Section 5.2, which had the highest AUC
among the ten cross validation models assuming an ATS ratio of
50%. Specifically, we deployed AdCPG with an accuracy of 93.64%,
a precision of 97.69%, a recall of 89.41%, and an AUC of 0.9752.

For WebGraph, we used the random forest classifier that fol-
lowed the experimental settings outlined in the paper [49]. This
involved trainingWebGraph on the dataset of all resource types
but without taking into account deduplication and ATS ratios while
utilizing the same filter lists from the paper. Similar to AdCPG, we
deployed the model with the highest AUC among the cross valida-
tion models, which exhibited an accuracy of 91.92%, a precision of
91.60%, a recall of 88.96%, and an AUC of 0.9715.
Discovered ATS JS files. Figure 7 depicts Venn diagrams that
illustrate the number of crawled JS files, crawled JS file domains,
and distinct JS files, which are identified by AdCPG,WebGraph,
and filter lists from Section 5.1. For the filter list-based approach,
we considered a JS snippet as ATS if its URL matched the rules in at
least two filter lists. Note that AdCPG identified 1,469 JS files that
were not detected byWebGraph or the filter lists. This indicates
that AdCPG uncovers ATS resources that would have been missed
by the other detection methods.

In Figure 7a, the Venn diagram represents the inclusion rela-
tionships between the crawled JS snippets. Both AdCPG and Web-
Graph have unique areas of ATS JS files that other classifiers are
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Figure 7: Comparisons of ATS JS files and their domains dis-

covered by AdCPG, WebGraph, and filter lists.

unable to detect. This observation highlights the complementary
role of AdCPG in finding ATS resources. Furthermore, we observed
thatWebGraph identified a larger number of ATS scripts compared
to the other detection approaches. This is primarily due to the fact
that we labeled JS snippets as ATS when their URLs matched at
least one ATS filter list, which aligns with the original experimental
settings of WebGraph. This broader definition of ATS classification
led to a higher number of identified ATS JS files. At the same time,
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Figure 8: Distributions of important features.

this introduced a high number of FPs in WebGraph; 528 network
nodes requesting the jQuery library were misclassified, particularly
when the average degree connectivity was abnormally low. Figure 7b
shows the inclusion relationships between the script domains of
the crawled JS files in Figure 7a. It shows that AdCPG identified 500
script domains that were not identified by the other approaches.

The Venn diagram in Figure 7c shows the inclusion relationships
between the identified JS snippets, taking into account that different
URLs can serve the same JS snippet. We counted distinct JS snippets
based on their AST structures. ForWebGraph, we labeled a unique
JS snippet as ATS when it consistently classified at least 50% of the
network requests fetching the identical JS snippet. AdCPG reported
650 distinct JS files as ATS JS snippets that the other approaches
were unable to identify or consistently classify.

From the 650 distinct JS files that only AdCPG classified as ATS,
we sampled the most popular 20 JS files that were fetched or em-
bedded across various websites. We examined each JS snippet using
AdCPG explanations and summarized their behaviors in Table 9.
The last column in the table indicates thatWebGraph exhibited in-
consistent classification with variations ranging from 0% to 42.86%.
We also examined the domains from which these JS files were
fetched and their industry sectors. As the table shows, AdCPG cor-
rectly identified prevalent JS files that engage in ATS behaviors in
the advertising and social engineering sectors, whereWebGraph
exhibited inconsistent classification.
Postmortem analysis. We further analyzed the possible causes
of the observed inconsistent classification by WebGraph. We ana-
lyzed the distributions of important features in the network request
nodes fetching the JS files in Table 9. Figure 8 shows the distribu-
tions of the average degree connectivity and shared information edge
ancestors features, which reported the highest information gains in
ATS classification [29, 49]. In each figure, the left-hand side plots
represent the distributions of the features from ATS and Non-ATS
instances, and the right-hand side plots show those of the ATS and
Non-ATS network requests that fetch the Twitter JS script conduct-
ing ATS behaviors. The width of each plot represents the frequency
of the feature values. The solid line in each plot represents an av-
erage of the feature values. The left-hand side plots confirm that
the feature distributions of ATS and Non-ATS are clearly different.
However, the feature values of network nodes that fetch the iden-
tical ATS scripts from Twitter vary across different websites, as
the right-hand plots show. Such a variance in the feature values of
shared information edge ancestors is even more apparent, as shown
in Figure 8b.

We observed that a lot of JS files solely classified by AdCPG
engaged in Fingerprinting and User Activity Tracking. In particu-
lar, WebGraph did not identify any network requests that fetched
a JS file from hsappstatic.net. This script is designed to conduct
browser fingerprinting to extract various types of information us-
ing Navigator and non built-in APIs. As discussed in Section 5.3,
WebGraph cannot detect ATS behaviors that involve the internal
interactions of JS APIs. These observations demonstrate the neces-
sity of JS classification based on CPGs, which addresses the FNs
that existing state-of-the-art classification methods produce.

7 LIMITATIONS AND DISCUSSION

Coverage. AdCPG is specifically designed to classify JS snippets
based on their CPGs. It does not cover other types of ATS resources,
such as images and CSS files. However, we emphasize that ATS
JS snippets serve as the foundation for loading other ATS web
resources, including advertising images and iframes. Furthermore,
JS code plays a crucial role in enabling various tracking behaviors,
including fingerprinting. Therefore, AdCPG indirectly covers other
ATS resources that are loaded by ATS scripts.

Due to a limited capability of the crawler, AdCPG is unable
to capture inline scripts and scripts composed via dynamic code
generation. This limitation can be addressed by amore sophisticated
crawler using browser instrumentation. However, we emphasize
that most ad-serving inline scripts involve fetching third-party JS
snippets via network requests, which AdCPG is able to cover.
CPG feature engineering.AdCPG builds CPGs tailored for graph
classification to identify ATS resources. Because extracting neces-
sary features from CPGs involves manual investigation based on
domain knowledge, additional feature engineering can further im-
prove the performance. We attempted to encode API features by
adding various combinations of fingerprinting-related interfaces
from previous studies [5, 14, 27, 35], such as BatteryManager and
CanvasRenderingContext2D. However, when augmenting those
fingerprinting-related APIs to AdCPG, the accuracy fluctuated by
less than 1%.
Deployment. AdCPG is well-suited for batch classification of JS
files. Its ability to efficiently process multiple JS files makes it a
valuable tool for compiling a filter list in the backend or assisting
the maintainers of such a list. Given that extracting CPGs can be a
time-consuming process, AdCPG can be utilized to automate the
generation of a filter list based on ATS classification results.

Filter lists have limitations in terms of scalability, robustness,
and coverage. Manually curating filter lists is a challenging task, as
it cannot keep up with the rapidly changing web environment, and
the coverage is often limited to popular websites [28, 51]. Moreover,
filter lists relying on static, predefined rules are susceptible to being
bypassed [4, 24]. ML-based approaches have been introduced to ad-
dress these issues. However, they still have FPs and FNs, making it
problematic to directly create filter rules based on their predictions.
Therefore, manual verification is necessary to validate JS files classi-
fied as ATS. One of the challenges in manual verification is the lack
of intuitive explanations provided by context-based approaches. An
effective explanation should pinpoint the specific code responsible
for ATS behaviors. Additionally, when dealing with lengthy JS files,
manual verification can be time-consuming and labor-intensive.
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In these cases, AdCPG can be particularly helpful. It assists in
manual verification by pinpointing the JS code areas that are re-
sponsible for conducting ATS behaviors, which aids in categorizing
ATS scripts and narrowing down the area of investigation. By pro-
viding the detailed explanations and highlighting the specific JS
code related to ATS behaviors, AdCPG streamlines the manual
verification process and facilitates the identification and validation
of ATS resources.

8 RELATEDWORK

Previous research has demonstrated that the presence of ATS re-
sources is prevailing, threatening the privacy of users [1, 15]. Web
advertising and tracking services have not only expanded their
influence in various platforms, including desktop, mobile, and OTT
devices, but also abused the security vulnerabilities of these plat-
forms [1, 15, 42, 48].
URL-based detection.Adblock [2], Adblock Plus [46], and uBlock
Origin [55] are popular URL-based ATS blocking tools that de-
pend on crowd-sourced filter lists of matching ATS URL compo-
nents against web resource URLs. Gugelmann et al. [21] extracted
supplementary information from network requests and applied
ML techniques to augment filter lists. Yu et al. [65] proposed a
method for identifying tracking domains by detecting third-party
domains that receive similar unique tokens across multiple first-
party websites. However, previous studies have pointed out the
limitations of URL-based detection in terms of scalability and ro-
bustness [4, 24, 28, 37, 51].
JavaScript-based detection. Motivated by the fact that ATS JS
files invoke different APIs from Non-ATS JS files, Wu et al. [59] pro-
posed DMTrackerDetector, an ML classifier that uses dynamic
JS API calls as features. Kaizer et al. [31] focused on monitoring a
limited number of APIs compared to DMTrackerDetector but
additionally considered HTTP headers and metadata of JS snip-
pets. These methods achieved high performance in classifying ATS
scripts. However, they are unable to pinpoint which part of the JS
code is responsible for the classifier, making final decisions. On the
other hand, AdCPG provides a fine-grained explanation for each
classification result.

Ikram et al. [26] proposed a one-class ML classifier to check the
similarities of JS snippets by examining semantic and syntactic
tokens from the JS code or their PDGs. However, their approach
does not fully utilize the structural information of a given JS file.
AdCPG addresses this limitation by leveraging a GNN classifier and
learning the commonalities in CPGs that engage in ATS behaviors,
without losing the semantic and structural information.
Context-based detection. Iqbal et al. [29] proposed AdGraph,
the first context-based approach to building a graph representation
of a given web page and extracting structural and content features
from the graph. However, context-based detection inherently suf-
fers from inconsistent classification varying by loading context.
Moreover, context-based methods lack explainability; their expla-
nations are important graph features in loading JS scripts, which
cannot attribute specific JS code in which actual ATS behaviors
take place.

There have been several attempts to supplement AdGraph by
augmenting the graph representation with additional web page

information [10, 49, 50]. Sjösten et al. [50] added perceptual features,
which are resource content intercepted from the image rendering
pipeline of a browser, into the graph representation of AdGraph.
Chen et al. [8] generated execution signatures that abstract the ATS
behaviors from the graph representation. Siby et al. [49] proposed
WebGraph, which adds the flow information of the browser storage
and network, which captures information sharing patterns between
trackers, into AdGraph.

Yang et al. [62] constructed the graph representing HTTP net-
work traffic and formulated ATS detection into edge representation
learning and classification in the graph.

9 CONCLUSION

We present AdCPG, the first CPG-based classifier specifically de-
signed for ATS classification. AdCPG addresses the technical chal-
lenges of adapting JS CPGs for graph classification using a GNN
model. For this, we propose novel algorithms for pruning unneces-
sary nodes and edges in CPGs as well as computing node features
tailored for GNN classification. One key strength of AdCPG is its
ability to provide code-level explanations by leveraging a GNN ex-
plainer. This highlights important JS code that contributes to ATS
classification, enabling the computation of intuitive explanations,
greatly facilitating the validation process of ATS classification. Ad-
CPG demonstrated the superior performance compared to existing
state-of-the-art ATS detection tools. Upon deployment, AdCPG
identified 650 distinct JS files that existing ATS filter lists and Web-
Graphwere unable to identify, thus highlighting its complementary
role in ATS classification.
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