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Abstract
Recent studies on training data extraction attacks have demon-
strated significant threats to the language model ecosystem.
In a typical machine learning deployment scenario where a
pre-trained language model is fine-tuned on users’ private
data, an adversary may attempt to leak personally identifi-
able information (PII) memorized by the fine-tuned model.
Prior work has demonstrated this privacy risk by inducing a
model to output PII in response to handcrafted or outsourced
prompts. However, little attention has been given to how a
smart adversary will design optimal prompts for successful
PII extraction.

In this work, we address this knowledge gap. We propose
Private Investigator, an attack framework designed to optimize
prompts for querying a target language model to extract PII
used for its fine-tuning process. We propose a new prompt gen-
eration method that aims to craft promising prompts, which
induce the target language model to emit as many PII items
as possible by exploring diverse contexts. Private Investigator
then exploits these generated prompts to conduct extraction
attacks. To this end, we develop a prompt selection strategy
that prioritizes the most promising prompts for successful
PII extraction, taking full advantage of each extraction attack
opportunity. In evaluation, we demonstrate that Private Inves-
tigator extracts up to 1,254 more email addresses, 634 more
phone numbers, and 5,087 more personal names, outperform-
ing existing attacks in extracting PII items.

1 Introduction

Language models (LMs) have gained widespread attention
because of their unprecedented capabilities across diverse
fields, such as medical diagnosis using clinical data [43, 50],
language translation [13, 31], and code generation [27, 32, 42].
The industry is actively seeking the deployment of LMs to
improve user experiences in their core services. For example,
OpenAI provides a fine-tuning service1 where a user can

1https://platform.openai.com/docs/guides/fine-tuning

customize ChatGPT by fine-tuning it on their own private
data and deploy the resulting model to the public.

Recent studies have demonstrated the privacy risks in the
LM ecosystem. Initial work [9, 11, 21] investigated training
data extraction attacks that enable an adversary to reconstruct
verbatim training examples that may contain sensitive infor-
mation. More recently, researchers have tailored these training
data extraction attacks to specifically target personally identi-
fiable information (PII) items, such as names, email addresses,
and phone numbers, and have referred to these attacks as PII
extraction attacks [33].

Training data extraction attacks work by querying a target
model with a number of handcrafted or outsourced prompts.
However, these prior studies assume an adversary who ei-
ther already possesses effective extraction prompts or has no
prompts at all, overlooking the feasibility for the adversary de-
signing optimal prompts for PII extraction. The closest study
is by Carlini et al. [10], which presents a heuristic approach
that leverages prompts sampled from the Internet to extract
memorized texts used for training. But this approach is still
sub-optimal (see our evaluation results in §5).

In this work, we study a novel approach to generate ef-
fective extraction prompts. We are particularly interested in
addressing the question: How can an adversary generate a
set of prompts effective for PII extraction attacks? To this end,
we present Private Investigator, designed to induce a target
LM to leak email addresses, phone numbers, and personal
names used for its training process.

Private Investigator focuses on LMs fine-tuned using pri-
vate data by service providers, based on publicly available pre-
trained LMs from various sources (e.g., GitHub or Hugging-
Face). Private Investigator begins by preparing a surrogate
LM to aid the attack campaign. This surrogate LM is built us-
ing a publicly available pre-trained LM or a fine-tuned model
trained on the attacker’s own dataset. Importantly, Private
Investigator does not require the surrogate LM’s architecture
to be the same as that of the target LM. Private Investigator
then identifies promising prompts for the surrogate LM by
evaluating their effectiveness in extracting memorized PII
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items from the training dataset of the surrogate LM. It also
considers the diversity of contexts of prompts to extract a
diverse range of PIIs included in the training dataset.

Using these promising prompts against the surrogate LM,
Private Investigator extracts PII items from the target LM.
Instead of evenly distributing the limited number of attack
queries to the prompts, we propose a prompt selection strat-
egy. This strategy enables the selection of promising prompts,
leveraging their potential to maximize the number of distinct
memorized PII items while fully harnessing a limited num-
ber of attack opportunities. Inspired by the upper-confidence
bound (UCB) algorithm [5, 12], commonly employed in fuzz
testing [20, 34, 45, 47], we devise a prompt selection strategy.
This strategy assesses and ranks prompts based on their poten-
tial and performance in extracting new PII items (i.e., email ad-
dresses, phone numbers, and names). It rewards prompts that
generate PIIs with low perplexities and are selected less for
past extraction attacks, encouraging the selection of prompts
likely to produce new memorized PII items. Once a promis-
ing prompt is selected using this strategy, Private Investigator
uses it to generate a set of responses that contain PII items.

We evaluate the effectiveness of Private Investigator in
retrieving memorized email addresses, phone numbers, and
personal names from four LMs: GPT-2, GPT-Neo, OpenELM,
and PHI-2, each fine-tuned on the Enron and TREC datasets.
Private Investigator effectively extracted up to 6,079 email
addresses, 2,954 phone numbers, and 36,385 personal names
when generating 200,000 texts using 20 Private Investigator-
generated prompts. Private Investigator outperformed other
baseline methods, including those by Carlini et al. [11] and
Lukas et al. [33], particularly in extracting email addresses
and phone numbers from GPT-2, GPT-Neo, and PHI-2. Ad-
ditionally, Private Investigator demonstrated comparable effi-
cacy in extracting personal names.

Moreover, Private Investigator was able to extract PII items
that were not reconstructed by other training data extrac-
tion attacks, demonstrating the ability of Private Investigator-
generated prompts to probe various segments of the training
data.

We also demonstrate that differentially private training and
data deduplication are quite effective in reducing PII leakage
across all extraction attacks, including Private Investigator.
However, Private Investigator still managed to extract a total
of 772 and 770 PII items memorized by the GPT-Neo model
fine-tuned with differential privacy and data deduplication,
surpassing the baselines.
Contributions. We summarize our contributions as follows:

• We propose Private Investigator, the first prompt genera-
tion framework that induces a target LM to emit mem-
orized email addresses, phone numbers, and personal
names, which is applicable to testing the vulnerability
of the target LM to PII extraction attacks. To support
reproducible research, we release Private Investigator at
https://doi.org/10.5281/zenodo.15638376.

• We propose a new prompt generation method, which
finds promising prompts with diverse contexts to induce
the leakage of memorized PII.

• We devise a prompt selection strategy to maximize the
number of extracted PII items in order to make full use
of a limited number of PII attack attempts.

• We demonstrate that Private Investigator identified up
to 1,254 more email addresses, 634 more phone num-
bers, and 5,087 more names than state-of-the-art training
data extraction attacks using the same number of attack
opportunities. We also show the complementary role of
Private Investigator in identifying PII items that other
state-of-the-art attacks have not identified.

2 Background

In this section, we provide the background knowledge neces-
sary to understand our work.

2.1 Language Models
Language models (LMs) are the core component of many
recent natural language processing systems [14, 44]. LMs
are typically trained using the "next token prediction" objec-
tive [6]. The models learn the distribution of

Pr(x1,x2, ....,xn)

where x1,x2, ...,xn are the tokens from the vocabulary V. Us-
ing the chain rule of probability, it becomes:

Pr(x1, ...,xn) =
n

∏
i=1

Pr(xi|x1,x2, ...,xi−1) (1)

Most recent LMs leverage neural networks, particularly
those employing Transformer-based architectures [44], to ac-
curately parameterize this probability distribution. The basic
building block of these architectures is the Transformer layer,
which employs the attention-based mechanism [44], and the
layer is stacked multiple times to compose an LM. Our study
focuses on extracting training data from those LMs.
Training and fine-tuning LMs. Given a sequence of tokens
(x1,x2, ...,xn) from the training data D, an LM fθ is trained to
maximize the conditional probability in Eqn. 1. A common
loss function to minimize during its training is:

L =−log
n

∏
i=1

fθ(xi|x1,x2, ...,xi−1)

The training process iteratively optimizes the loss function
over the entire set of training records in D. The process stops
when the loss becomes sufficiently low and stores the model
f along with its parameters θ. The most common and recent
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practice is pre-training and then fine-tuning. LMs are pre-
trained on a large corpus of text data, typically sourced from
the Internet, to encode a general understanding of natural
human languages. Pre-trained LMs are often publicly accessi-
ble through open-source repositories, such as HuggingFace.
To tailor these pre-trained models for specific tasks, we then
fine-tune them on separate fine-tuning datasets designed for
the task at hand (e.g., an email corpus used to fine-tune LMs
for providing suggestions as we write emails). Because fine-
tuning datasets are often sourced from commercial services
(e.g., emails from Google’s user base), they may contain per-
sonally identifiable information (PII).
Generating texts. We denote a token sequence (x1, ...,xn)
as x1:n for brevity. An LM autoregressively generates a new
token by iteratively sampling xi based on the preceding token
sequence x1:i−1 and the conditional probability Pr(xi|x1:i−1).
If a token xi is chosen, the model samples the next token xi+1
based on the updated preceding sequence x1:i. This procedure
repeats until it meets a predefined stopping condition.

LMs can employ various strategies for sampling the next
token xi. Two popular approaches are: greedy sampling and
top-k sampling. Greedy sampling selects the next token with
the highest probability at each step, generating the most likely
sequence x1:n. Top-k sampling focuses on the top k candidate
tokens, re-normalizes their probabilities, and selects a token.
LMs can diversify the texts they generate with top-k sampling.

2.2 Training Data Privacy

Memorization in LMs. Because LMs rely on conditional
probability to model human language, there is a risk that a
model may memorize the relationship between a preceding
text sequence x1:i−1 and the following token sequence xi:n.
During fine-tuning with data that potentially contains PII, a
model may inadvertently memorize the relationships between
the PII and its preceding tokens (i.e., contexts). If exploited
by adversaries, the model could unintentionally emit token
sequences xi:n that reveal privacy-sensitive information.
Data extraction attacks are designed to intentionally expose
such sensitive information from a target LM using prompts.
The initial work by Carlini et al. [11] demonstrates this pri-
vacy risk at scale by targeting the GPT-2 models pre-trained
on a large corpus of data collected from the Internet [38].
Subsequent studies [9, 11, 33] have further demonstrated the
effectiveness of data extraction attacks, empirically showing
their ability to retrieve substantial amounts of PII and UUIDs.

The quality of data extraction depends on the extraction
prompts x1:i−1 adversaries use. Carlini et al. leveraged the
beginning of sentence (BOS) prompt or the prompts designed
based on the text sequences sampled from the Internet. The
intuition behind this strategy is that sequences collected from
the Internet are likely to resemble the contexts in the training
data. The most recent attack by Lukas et al. [33] makes a
diverse range of assumptions, ranging from the adversary

having no knowledge of the training dataset to knowing the
context token sequences x1:i−1 associated with the secret xi:n
they aim to extract. While Carlini et al. target pre-trained
models, Lukas et al. focus on fine-tuned models. Our study
concerns the privacy risks of fine-tuned models similar to
Lukas et al.

Most data extraction attacks to date rely on heuristics when
designing the prompts used for the extraction, while no prior
work studies an adversary optimizing the prompts for im-
proved extraction. Our work addresses this knowledge gap by
introducing a novel prompt generation method that enhances
the effectiveness of data extraction attacks.
Mitigating memorization. A formal approach to protecting
LMs from extraction attacks is to train them using differential
privacy (DP) [1]. While it still remains a question how to
apply DP correctly to the space of LM training, a straightfor-
ward adaptation in the prior work [33] demonstrates that the
extraction success becomes almost zero when trained with the
privacy guarantee ε of 8. A separate line of work [28, 30, 37]
presents ad-hoc approaches to mitigate the risks of LMs
against data extraction attacks, such as verbatim deduplica-
tion [30] or scrubbing sensitive information from the training
data [33]. While these methods do not provide formal guar-
antees, they have demonstrated effectiveness against existing
attacks. In §6, we examine both formal and ad-hoc approaches
against Private Investigator and show their effectiveness in
mitigating our attack.

3 Threat Model

Pre-training then fine-tuning has emerged as a common prac-
tice for building services with LMs and has been gaining
traction in both academia and industry. To date, for example,
numerous publicly-accessible services based on fine-tuned
models are hosted by OpenAI, along with a variety of third-
party frameworks that facilitate the agile development of such
services. These frameworks streamline the integration pro-
cess by unifying the API interfaces offered by various model
providers (e.g., OpenAI, Antrophic, Meta, and Claude). More
services based on fine-tuned models are becoming available
to users, but adversaries seeking private information of indi-
viduals may exploit these services’ prompting interfaces for
extracting such information.

Recent work explores the question of how vulnerable LMs
are to data extraction attacks? and has proposed potential
attacks across various settings. However, these studies have
yet to establish the practical upper-bound of data extraction.
It remains unclear whether the effectiveness of data extraction
attacks against pre-trained models [11, 21] transfers to fine-
tuning scenarios. More importantly, extraction attacks specifi-
cally tailored to fine-tuned models [33, 53] have been devel-
oped for auditing purposes, making unrealistic assumptions,
e.g., adversaries having full knowledge of the fine-tuning data.
A more practical assumption is that the attacker does not



Surrogate
Language  

Model
(Known Dataset)

Generated PIIs

Prompt #78 3 PIIs

Prompt #500

419 PIIsPrompt #200 office@usenix.org

user@example.com

518 PIIsadmin@mypage.com

Promising 
Prompts

Extracted PIIs

name@known.comPrompt #72 478 PIIs

Selected Prompts

Context Space

Top 1%

Non-selected Prompts

#500

Possible Prompts

#302

#200
#404

Select prompts
with diverse contexts

Phase II: Extracting PII Items

Generated 
Prompts Prompt #200 Prompt #302 Prompt #404 Prompt #500

Phase I: Generating Prompts

xxxx@unknown.com

Prompt #404

xxxx@target.com

Prompt #302

Extraction Attempt 𝑵 Extraction Attempt 𝑵+ 𝟏

Prompt Scoring
Function 𝑺𝑵(𝒙)  

Perplexity

Prompt Scoring
Function 𝑺𝑵+𝟏(𝒙)  

Target  Language  Model (Unknown Dataset)

Perplexity

Figure 1: Private Investigator workflow. Phase I is to generating prompts optimized for extracting PIIs in Phase II.

have access to the fine-tuning data and instead employs smart
strategies—such as prompt optimization—to improve their
chance of successfully extracting memorized data instances.
Our adversary is designed to address this gap.

Goal. The adversary’s objective is to maximize the extraction
of PII items memorized by a target LM (i.e., fine-tuned LM)
within a limited number of attack attempts. Here, we define an
attack attempt as the extraction of PII using a single prompt
that generates 2,000 texts. In our evaluation, we focus on
the adversary targeting three common types of PII: email
addresses, phone numbers, and personal names, which are
typically studied in prior work [10, 33].

Knowledge. We do not assume that the attacker has knowl-
edge of the training data used for fine-tuning. We also assume
that the adversary does not have access to the target fine-tuned
LM and its parameters, such as weights and biases. Instead,
the attacker has query access to the target LM, with visibility
into the confidence vector for a given token sequence (i.e., a
prompt). We assume that the adversary has unlimited query
access to publicly available pre-trained models, such as GPT-
like models [17, 38], which can be used as surrogates when
optimizing their extraction prompts. When using these pre-
trained models, we assume that the attacker has access to a
subset of the pre-training data. When this pre-training data
is unavailable to the adversary, we assume that the adversary
is capable of conduct fine-tuning a pre-trained LM with their
own private dataset to prepare a surrogate LM for optimizing
their extraction prompts.

Capabilities. Our assumptions regarding the attacker’s capa-
bilities align with those commonly made in black-box adver-
sarial examples [24, 40]: the attacker has a limited number
of query access to the target model and sufficient computing
resources to utilize their own surrogate model.

4 Private Investigator

We now present Private Investigator, an attacking framework
that employs the smart data extraction adversary we discuss
in §3. Figure 1 illustrates the overall workflow, composed of
two distinct phases designed to address the key challenges of
conducting data extraction attacks in a black-box setting.
Phase I: Generating prompts. In this phase, Private Investi-
gator generates a set of effective prompts for extracting memo-
rized PII (§4.2). Private Investigator leverages a surrogate LM
to compute a set of prompts to use in the later PII extraction
phase. The key objective of this phase is to identify prompts
that (1) effectively extract a large number of memorized PII
items from the surrogate LM and (2) trigger diverse contexts
of the surrogate LM when providing those prompts.

Private Investigator starts by preparing the most promising
prompt and iteratively adds prompts whose context vectors
from the surrogate LM are furthest from the average context
vector of the previously selected prompts, thus compiling the
final promising prompt set.
Phase II: Extracting PII items. Now Private Investigator ex-
ploits these generated prompts to produce responses from the
target LM that may contain PII items memorized by the target
LM (§4.3). When querying the target LM with these prompts,
we propose a novel prompt selection strategy designed to ex-
tract promising and diverse PII items. This strategy facilitates
Private Investigator to extract PII items that are highly likely
contained in the training dataset, and it also preserves the
diversity of extracted PII items with different prompts. Using
this selection strategy, the adversary interrogates the target
LM and collects the PII items it generates.

4.1 Challenges in Our Attack Design
Our attack design faces two key challenges. First, as we as-
sume a black-box adversary (§3), the adversary lacks knowl-



edge of the fine-tuning dataset used for a target fine-tuned
LM. This restriction makes it difficult to identify prompts
that effectively elicit memorized PII items from the target
LM. To address this, we leverage a surrogate LM using a
publicly available pre-trained LM or a LM finetuned with an
adversary’s own dataset.

4.2 Generating Prompts

Private Investigator is designed to generate a set of tailored
prompts that position the target LM in contexts that are likely
to elicit memorized PII in subsequent token sequences. To
achieve this, we select the promising prompts by counting the
extracted PII items in the surrogate LM’s generated text.

Our intuition on surrogate LM is that prompts effective in
extracting memorized PII from the surrogate LM will also be
effective for the target LM. This intuition stems from a recent
finding [23] showing that prompts optimized for one model in
a prompt leaking attack can transfer to other models. Specifi-
cally, their approach involves extracting the system prompt of
a target LM by solving a gradient-based optimization problem.
Notably, prompts optimized for one LM were transferable to
others, successfully revealing their system prompts as well.
Moreover, Su et al. [41] and Zou et al. [57] have demon-
strated that a carefully crafted prompt exhibits transferability
for the tasks of prompt tuning [19, 56] and jailbreaking [46],
respectively. We argue that this line of research and their find-
ings, which demonstrate the transferability of prompts across
different LMs, also extend to our attack. A detailed analysis
and evaluation of this intuition is elaborated in §5.4.

Algorithm 1 describes our prompt generation method. To
generate promising prompts, Private Investigator generates
texts using the surrogate LM and counts the memorized PII
items in the generated outputs. Private Investigator then finds
the promising prompts that maximize the number of emitted
PII items and contextual coverage on the surrogate LM.

Specifically, Private Investigator first finds the most promis-
ing prompt with a one-token length on the surrogate LM
(Lines 2–5). Private Investigator uses all possible token v
in the token vocabulary V as prompts and generates 200
texts consisting of 256 tokens for each (Line 2, Lines 15–
16). From the generated texts, Private Investigator counts the
number of PII items which appear in the surrogate LM’s train-
ing dataset. To find PII items in the generated texts and the
training dataset, Private Investigator utilize regular expres-
sions and NER (named entity recognition) tagger (Line 17).
Private Investigator then ranks the prompts based on their
efficacy in extracting PII items, and selects the top 1% of the
best-performing prompts (Line 3). For each top 1% prompt,
Private Investigator generates 2,000 texts and counts the num-
ber of PII items to enable a more extensive evaluation of their
PII extraction abilities (Line 4). Finally, Private Investigator
selects the most promising prompt (Line 5).

To cover a wide range of contexts with different prompts,

Algorithm 1: Generating prompts.
Input : # of prompts (n_prompt).
Output : A set of generated prompts (P).

1 function SearchPrompt(n_prompt)
2 pii_count_1← GetPIICount(V, 200)
3 T← GetTop(pii_count_1, |V |/100)
4 pii_count_2← GetPIICount(T, 2000)
5 P← GetTop(pii_count_2, 1)
6 for n_prompt−1times do
7 T← T−P
8 mean_h←mean

x∈P
Hidden(x)

9 min_sim←min
x∈T

Sim(Hidden(x), mean_h)

10
new_prompt← argmax pii_count_2[x]

x ∈ T,
Sim(Hidden(x),mean_h)≤ min_sim+θ

11 P← P+new_prompt

12 return P
13 function GetPIICount(S, n_text)
14 pii_count← {}
15 for x ∈ S do
16 texts← GenTexts(x, n_text)
17 pii_count[x]← CountTrainPII(texts)

18 return pii_count

Private Investigator selects more prompts with maximum con-
textual differences (Lines 6– 11). For this, Private Investigator
prepares candidate prompts set T by excluding previously se-
lected prompts P from the top 1% prompt candidates (Line 7).
To select the next prompt from the candidates, Private Inves-
tigator computes the mean context vector of the previously
selected prompts. The context vector is defined as the second-
to-last hidden states of the surrogate LM when the prompt is
provided (Line 8). Then, Private Investigator computes the
minimum cosine similarity between the candidates of new
prompt and the mean context vector (Line 9). A prompt can-
didate with the largest context difference (minimum cosine
similarity) with the previously selected prompts is selected as
a new prompt. If multiple prompt candidates have cosine sim-
ilarities close to the minimum cosine similarity differences
(θ = 0.01), Private Investigator selects the one that emits the
largest number of PII items in 2,000 generated texts (Line 10).
This process is repeated until 20 prompts are collected.

In summary, these prompts are tailored to extract PII items
that trigger diverse contexts for the following responses from
the surrogate LM and contribute to eliciting a large number
of memorized PII items.

4.3 Extracting PII Items
Using the generated prompts computed from Phase I, the ad-
versary conducts an attack campaign consisting of a specified
number of PII extraction attempts.

Note that each extraction attack requires selecting one from



the generated prompts to produce responses that may con-
tain memorized PII items. This naturally requires selecting
effective prompts among the Private Investigator-generated
prompts.
Prompt selection strategy. To this end, we propose a prompt
selection strategy designed to maximize the identification of
memorized PII items. Specifically, we introduce a prompt
scoring function inspired by the upper-confidence bound
(UCB) algorithm [5, 12], which is widely used in fuzzing
research for choosing promising inputs to increase code cov-
erage [20, 34, 45, 47].

SN(x) =

√
ln(N)

nx
− c ·PII_Perplexityx (2)

Equation 2 defines the prompt scoring function SN for Pri-
vate Investigator. We compute a prompt score for each prompt
x when selecting the most effective prompt on each Nth PII
extraction attack attempt. The scoring function consists of
two terms: an exploration term and an exploitation term.

The first term, the exploration term, is designed to priori-
tize prompts that have been selected less frequently. Here, N
denotes the number of conducted extraction attacks, and nx
represents the number of times the prompt x has been selected.

The second term, the exploitation term, represents the per-
plexity values of the extracted PII items. For each prompt,
Private Investigator collects all the PII items extracted by that
prompt up to that point. Private Investigator then calculates
the perplexity of the group of PII items and computes their av-
erage. Finally, the averaged perplexity values of each prompt
are rescaled to a range between 0 and 1. This term quantifies
the likelihood that the extracted PII items exist in the training
data. A low perplexity indicates a high probability of generat-
ing the PII, suggesting that the PII is likely memorized by the
LM during its training process.

Consequently, our scoring function for selecting effective
prompts aims to prioritize those that are most likely to elicit
PII items and those that have been selected less frequently.
This approach balances the exploration of new prompts with
the exploitation of known effective prompts that have pro-
duced promising PII items. For each limited PII extraction at-
tempt, Private Investigator identifies the most effective prompt
by selecting the one with the highest prompt score.
Interrogating Target LMs. Private Investigator conducts an
extraction attack for each prompt selected by the prompt se-
lection strategy. In each extraction attack, Private Investigator
generates output texts that follow the selected prompt. Specif-
ically, we generate 2,000 texts, each consisting of 256 tokens.
Private Investigator conducts 100 extraction attack attempts
in one attack campaign, which results in a total of 200,000
texts. After each text generation, regular expressions are used
to identify and extract email addresses and phone numbers
from the generated texts.

Table 1: Statistics of the datasets used for fine-tuning target
LMs. We split each dataset into train, validation, and test.
This table only shows statistics of for train portions.

Dataset Enron TREC

# total email records 232,830 78,434
# average tokens per record 577.71 669.96
# unique PII (email address) 75,307 21,093
# unique PII (phone number) 19,228 2,521
# unique PII (personal name) 163,420 28,441
Ratio of records w/ PII 84.40% 82.70%

5 Evaluating Private Investigator

5.1 Experimental Setup
To evaluate the risk of the adversary extracting PII items from
the dataset used for fine-tuning, we use publicly available LMs
that are pre-trained on public datasets and fine-tune them on
two different datasets that may contain sensitive information.
Datasets. Our evaluation focuses on three types of PII: names,
email addresses and phone numbers. We choose datasets con-
taining a large number of these PII items: Enron [29] and
TREC [48]. The Enron dataset, made public during the le-
gal investigations of the Enron scandal, comprises 517,401
email messages involving 150 individuals. The TREC dataset,
published by NIST at the 2005 TREC conference, includes
174,299 email messages from World Wide Web Consortium
(W3C) mailing list. It contains correspondence related to dis-
cussions and feedback on W3C standards. We run our script
written with regular expressions that match email addresses
and phone numbers on these datasets to search for all avail-
able PII items. For identifying names, we use FLAIR NER
tagging classifier [2], selecting named entities labeled with
person POS tags. Table 1 summarizes the dataset statistics.
LMs. We use four commercial-scale LMs, publicly available
from prior studies or the Internet: GPT-2 [38], GPT-Neo [17],
OpenELM [36], and Phi-2 [25]. We note that prior studies [11,
33] only covered GPT-2 to evaluate data extraction attacks.
We choose the GPT-2-small variant which has 117 million
parameters. GPT-Neo is a public replication of GPT-3, with
125 million parameters. It shares the same architecture as
GPT-3, but is trained with the Pile dataset [17]. OpenELM
is an open language model released by Apple. Because of
comparable performance using a small number of parameters
(∼270 million), it is well-suited for on-device inference and
fine-tuning.

Phi-2, recently released by Microsoft, is an open-source
large language model (LLM) with 2.7 billion parameters. It is
trained on synthetic NLP texts and filtered web data for safety
and educational purposes.

Note that all of these models are based on the Transformer
architecture. We fine-tune all models for four epochs on



Table 2: Performance of Private Investigator. We report the number of PII items extracted by our attack and four baseline
methods from the target LMs (i.e., GPT2, GTP-Neo, OpenELM, and Phi-2) fine-tuned on two datasets: Enron and TREC.

PII Type Extraction Method
GPT2 GPT-Neo OpenELM PHI-2

Enron TREC Enron TREC Enron TREC Enron TREC

Email

Carlini et al. (Top-K) 2427 549 2477 721 5568 1603 4825 836

Address

Carlini et al. (Temp) 2297 538 2188 736 5315 1955 4835 838
Carlini et al. (Internet) 2248 542 2163 698 4785 1791 5732 838
Lukas et al. 1984 542 1393 624 3523 1280 5119 846
Private Investigator (Pre) 2475 579 2513 740 5294 1945 6079 872
Private Investigator (Fine) 2415 571 2471 741 4661 1800 5910 857

Phone

Carlini et al. (Top-K) 1407 101 1946 132 2366 240 2320 146

Number

Carlini et al. (Temp) 1310 102 1854 128 2033 280 2505 151
Carlini et al. (Internet) 1381 103 1809 121 2079 319 2384 151
Lukas et al. 1223 98 1741 112 2238 209 2323 148
Private Investigator (Pre) 1441 102 2008 146 2278 332 2954 156
Private Investigator (Fine) 1389 108 1960 143 2433 327 2527 163

Personal

Carlini et al. (Top-K) 21063 4113 24359 4833 37693 7862 33051 4997

Name

Carlini et al. (Temp) 20828 4231 23234 4825 38313 8487 34780 5333
Carlini et al. (Internet) 21465 4667 24039 5371 36309 8297 31298 4997
Lukas et al. 19746 3830 20770 4487 32783 7214 33066 4733
Private Investigator (Pre) 21869 4317 24590 5009 37132 7145 34244 5084
Private Investigator (Fine) 21903 3913 24616 4903 36443 8472 36385 5049

each dataset, following the experimental setup from prior
work [33]. However, due to computational constraints and
overhead, Phi-2 is fine-tuned for only one epoch per dataset.
Surrogate LMs. Recall that the adversary has two options
for constructing their surrogate LM: a pre-trained public LM
and a fine-tuned version of this public LM. We select GPT-
Neo for the former as the dataset used for the pre-training
is publicly available [17]. For the latter, the adversary fine-
tunes their pre-trained LM using their own dataset, which is
different from the one used to train the target LM. Particularly,
when the target LM is trained on the Enron dataset, we use
a surrogate LM trained on the TREC dataset, and vice versa.
We use GPT-Neo as the pre-trained LM and fine-tune it to
create a surrogate LM, which we then use to generate optimal
prompts for extraction attacks against all four models.
Baseline attacks. We evaluate Private Investigator against
two state-of-the-art data extraction attacks, presented in the
work by Carlini et al. [11] and Lukas et al. [33], respectively.
Carlini et al.’s extraction attack has three different variations:
Top-k, Temp, and Internet, depending on the text generation
strategy it uses, resulting in four baselines.

• Carlini et al. (Top-K) generates texts starting from a
beginning-of-sentence (BOS) token using top-k sampling,
with k set to 40, as in the original study. We produce
200,000 text instances, each with a token length of 256.

• Carlini et al. (Temp) generates texts with a decaying tem-
perature t. t divides the logit vector before the softmax
layer and flattens the probabilities for the next token candi-

dates. We use a high temperature for the first 20 tokens to
encourage the target model to generate diverse text, with
an emphasis on the initial token sequence.

• Carlini et al. (Internet) We sample prefixes that are fol-
lowed by email addresses or phone numbers from a subset
of the Common Crawl dataset. Using these prefixes, we
follow the same procedure as in the Carlini et al. attack,
generating 200,000 texts.

• Lukas et al. We extract PII items from an empty prompt.
We execute Lukas et al. attack, which has the same threat
model as our work. Using the empty prompt, we generate
200,000 texts with the target model and collect PIIs.

5.2 Extraction Performance

Number of extracted PII items. We first evaluate the per-
formance of Private Investigator by measuring the number of
PII items extracted from each target LM. Table 2 summarizes
our extraction results. The top six rows present the results for
email address extraction, the next six rows show the results
for phone number extraction, and the last six rows report the
results for name extraction. Depending on the surrogate LM
used by our attack, we report two variants: Pre and Fine.

In 17 out of 24 cases (across 8 LMs and 3 PII types), Private
Investigator outperforms the baseline attacks, demonstrating
its effectiveness in extracting PII items from the target LMs.
It extracts up to 1,254 more email addresses, 634 more phone
numbers, and 5,087 more names compared to the baselines.



Notably, Private Investigator significantly outperforms the
Lukas et al. attack—for instance, extracting nearly twice as
many email addresses from GPT-Neo fine-tuned on Enron.
These results suggest that our prompts elicit more diverse
contexts, increasing the likelihood of revealing memorized
PII compared to using an empty prompt that Lukas et al. used.

However, we observe an exception with the OpenELM
model when extracting memorized email addresses and per-
sonal names. From the OpenELM fine-tuned on the En-
ron dataset, Private Investigator extracts 274 fewer email
addresses compared to Carlini et al. (Top-K) and 21 fewer
compared to Carlini et al. (Temperature). Private Investiga-
tor still performs comparably, extracting 5,294 memorized
email addresses, and outperforms the other baselines, includ-
ing the Carlini et al. (Internet) and Lukas et al. attacks. It
also extracts 1,181 and 15 fewer personal names compared
to Carlini et al. (Temperature) from the OpenELM models
fine-tuned on Enron and TREC, respectively.

We note that Private Investigator exclusively extracts 1,761
email addresses and 6,955 names from the target LMs fine-
tuned on the Enron and TREC datasets, respectively (Fig-
ure 11 in Appendix). Accordingly, these results underscore
the complementary nature of Private Investigator in extracting
PII items with characteristics that differ from those of the
other extracted PII items with the baseline attacks.
Comparing overlaps in extracted PII. Overall, Private In-
vestigator is capable of extracting more PIIs from LMs, high-
lighting its potential as a new auditing method. But it remains
unclear whether our attack extracts more PIIs "on-top-of"
those extracted by the baselines, or it retrieves a different set
of PII items. In the latter case, the takeaway for LM audi-
tors would be to employ Private Investigator alongside all the
baselines to comprehensively evaluate data extraction risks.

To address this question, we compare the overlap between
the PII items extracted by the three attacks. Figure 2 presents
Venn diagrams for the total PII items that the baseline methods
and Private Investigator extracted from the GPT-Neo. For the
Carlini et al. attack variants, we select the Top-K method as it
shows superior attack performance compared to other variants.
We include the extraction results for GPT-2, OpenELM, and
Phi-2 in Appendix C and focus on GPT-Neo in the main text,
as the others show similar trends.

The email addresses, phone numbers, and names extracted
by Private Investigator differ most from those identified by
the baseline attacks, highlighting Private Investigator’s ability
to prompt LMs in varied contexts. This demonstrates Private
Investigator’s capability to elicit diverse responses, effectively
exploring different regions of the training data.

5.3 Attribution of Attack Effectiveness

Now we analyze the factors that may attribute to the effec-
tiveness of our attack. We categorize our analysis into three
levels: (1) Data-level—focusing on duplication, token lengths,
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Figure 2: Visualizing the overlap of PII items extracted
from GPT-Neo by ours and two baselines: Carlini et al.
(Top-K) and Lukas et al. From top to bottom, each row corre-
sponds to the extraction of email addresses, phone numbers,
and names. The left column shows results for models fine-
tuned on Enron, while the right shows results for TREC.

and the perplexity of extracted PII items; (2) Prompt-level—
examining the contextual similarities associated with the ex-
tracted secrets; and (3) Model-level—investigating the impact
of how the surrogate models are constructed.
(Data-level) Duplication of PII items. Studies [9, 11] have
reported a positive correlation, between the frequency of PII
duplication in the training data and the success rate of ex-
traction attacks. Motivated by these findings, we conduct a
qualitative analysis of the uniquely extracted PII items by
examining their duplication frequency in the training data.

Figure 3 shows our results. We analyze the training dataset
to count how many times each extracted PII item appear. Im-
portantly we only include PIIs that are exclusively extracted
by Private Investigator and the baseline attacks: Carlini et al.
(Top-K) and Lukas et al. The x-axis represents the number of
times a PII item is duplicated in the training data, while the
y-axis indicates the total number of extracted email addresses
and phone numbers from GPT-Neo.

Comparing Figure 3a and Figure 3b, we observe that the
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Figure 3: PII duplication and extraction success. Number
of uniquely extracted PII items (email addresses and phone
numbers) by each attack, categorized by the number of times
the PII items appear in the training data.

proportion of duplicated PII items among the extracted ones is
higher for TREC than for Enron. Specifically, most extracted
PII items in Enron appear 6–10 times in the training data,
while those in TREC are duplicated 11–50 times.

For the TREC dataset, we find that Private Investigator
successfully extracts 16 PII items with no duplicates in the
training data. In comparison, the attacks by Carlini et al. (Top-
K) and Lukas et al. extract 12 and 4 non-duplicated PII items,
respectively. Similar trends are observed in the Enron dataset.
These results demonstrate that Private Investigator is more ef-
fective at extracting PII items with low duplication frequency
in the training data, highlighting its ability to recover less fre-
quently repeated records and to complement existing attacks.
(Data-level) Perplexity of PII items. To understand the char-
acteristics of extracted PII items, we compare the average
perplexity of PII items exclusively extracted by Private In-
vestigator and the baseline attacks: Carlini et al. (Top-K) and
Lukas et al. We analyze our results from GPT-Neo.

As shown in Table 3, PII items exclusively extracted by
Private Investigator tend to exhibit lower perplexity values
compared to those extracted solely by the baseline methods.
The average perplexity of phone numbers extracted exclu-
sively by Private Investigator is 23.53 for GPT-Neo fine-tuned
on Enron and 76.74 for TREC. In contrast, phone numbers ex-
tracted only by the baseline attacks have higher perplexities of
28.87 and 117.43, respectively. These differences correspond
to a perplexity reduction of 18% to 34.6%, suggesting that
Private Investigator tends to elicit lower-perplexity (i.e., more
predictable) PII items. This trend further confirms our prompt
scoring function—which is designed to prioritize prompts that
elicit PII items with lower perplexity—working as expected.
(Data-level) Token lengths of PII items. Lukas et al. [33]
demonstrate that PII items with fewer tokens are more suscep-
tible to extraction attacks. To evaluate whether this tendency
aligns with our attack, we present the token length of all email
addresses that Private Investigator extracts in Figure 4. Con-
sistent with the findings of Lukas et al., Private Investigator
achieves higher extraction success for PII items with shorter
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Figure 4: Impact of the token length on number of extracted
email addresses.

Table 3: Perplexity of PII items on average, uniquely ex-
tracted by Private Investigator and the baseline attacks: Car-
lini et al. (Top-K) and Lukas et al.

Extraction Email Phone
Method Enron TREC Enron TREC

Baselines 29.74 30.99 28.87 117.43
Ours 30.58 26.73 23.53 76.74

token lengths. Specifically, items with token lengths between
5 to 10 are the most vulnerable, whereas those exceeding 20
tokens are rarely extracted.

We also examine the impact of differential privacy (DP)
on the token length distribution of extracted PII items. DP
substantially reduces the number of successful extractions,
particularly for longer PII items. In the TREC dataset, Private
Investigator is unable to extract any PII items longer than
10 tokens when DP is applied, while it successfully extracts
hundreds of PII items without mitigation. We further discuss
the impact of DP and other defense strategies in §6.

(Prompt-level) Contextual similarity. We now turn our at-
tention to the context that directly contributes to extracting
PII items. We focus on the penultimate layer representations
of the target LM—the hidden states corresponding to the to-
ken immediately preceding the PII item generated by Private
Investigator. These representations encode the model’s inter-
nal understanding of the preceding text’s context just before
generating a PII item. As contextualized embeddings, they
encode rich semantic and relational information about the
preceding token, without being influenced by the output vo-
cabulary. We refer to this hidden state as a latent vector for
simplicity.

To better understand why Private Investigator exclusively
extracts certain PII items, we compare the latent vectors com-
puted from three sources: texts generated by Private Investi-
gator that precede certain PII items (PV), those generated by
baseline attacks (OV), and the original training data—referred
to as the ground-truth latent vector (GV). We compare how
close PV and OV are to GV, measuring the closeness of the
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Figure 5: Contextual similarity between the latent vectors of
preceding texts for PII items exclusively extracted by Private
Investigator (PV), the corresponding latent vectors from the
training data (GV), and the latent vectors of preceding texts
for PII items exclusively extracted by baseline attacks (OV).

preceding generated texts to the training records associated
with the target PII item—i.e., the texts the model has seen
during training. A larger similarity between PV and GV indi-
cates a higher likelihood that the prompt will elicit the target
PII item. We measure cosine similarity for the closeness [18].

Computing latent vectors is straightforward: we run a for-
ward pass using the sequence of tokens—either generated
texts or training data—that precede each of the target PII
items. For PV and GV, we use PII items uniquely extracted by
Private Investigator, and we use PII items uniquely extracted
by baseline attacks for OV. If multiple GVs exist for a single
PII item in the training data, we select the one closest to the
PV or OV in terms of cosine similarity. We refer to them as
PV-GV and OV-GV.

Figure 5 illustrates our comparison, with the complete re-
sults are in Table 9 in Appendix. Across the board, for PII
items exclusively extracted by Private Investigator, the aver-
age cosine similarity between PV-GV pairs is consistently
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Figure 6: Private Investigator with sufficient computing
resources. We show the number of extracted email addresses
as a function of the number of generated text responses against
two baseline attacks: Carlini et al. (Top-k) and Lukas et al.

higher than that between OV-GV pairs. Our results indicate
that, for successful PII extraction, Private Investigator gener-
ates preceding texts that are more similar to the GVs from
the training data than those generated by baseline attacks.
Private Investigator’s prompt optimization strategy effectively
navigates regions within the target LM’s latent space that are
closer to the GVs associated with the PII items it uniquely
extracts. At the same time, we observe that certain regions
not accessed by Private Investigator are activated by the base-
line attacks, suggesting the presence of alternative contextual
pathways that can also lead to PII exposure.
(Prompt-level) Unleashing full potential. Due to the compu-
tational constraints associated with operating large-scale LMs,
we limit our experiments to generating a total of 200,000 text
responses per model during the attack. An interesting question
arises from this limit: what if we lift this resource constraint
in our attack evaluation? Exploring this would reveal whether
extending the attack runtime leads to the extraction of addi-
tional PII items or whether the results eventually saturate—
indicating diminishing returns beyond a certain threshold.

To answer this question, we extend our attack by generating
up to one million text responses when interrogating the target
LM. Specifically, we use a pre-trained LM as the surrogate
and measure the number of email addresses extracted from
GPT-Neo fine-tuned on the Enron dataset. Figure 6 shows our
results. We observe that the rate of PII extraction—measured
by the number of emails extracted per generated text—drops
sharply and eventually plateaus across all three attack meth-
ods. After generating 1M text responses, Private Investigator
extracts ∼4,000 email addresses. We consistently outperform
Carlini et al. (Top-k) and Lukas et al., extracting a larger
number of PII items under the same computational budget.

(Model-level) Domain fine-tuned surrogate models. We
had a counter-intuitive observation: in many cases, Private
Investigator could extract slightly more PII items when the
attacker used open-source pre-trained LMs as-is, compared
to when the same models were fine-tuned on domain datasets.
This finding challenges the conventional assumption that do-
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Figure 7: Visualizing the overlap of PII items extracted
from Private Investigator with the prompts generated by the
pre-trained and the fine-tuned model as surrogate LMs.

main adaptation of surrogate models should improve attack
success by better approximating the target LM’s behavior.
One possible explanation is the overfitting (or distributional
narrowing) that happens during fine-tuning. Fine-tuning on
a narrow domain may reduce the surrogate’s generalization
capability, leading to reduced prompt diversity and limiting
the exploration of broader linguistic contexts in which PII
might appear. In contrast, pre-trained models retain broader
linguistic priors and diverse generation behaviors that may
align with the prompt optimization by Private Investigator.

However, we also observe a few cases where fine-tuned sur-
rogate models achieve better extraction performance—for ex-
ample, extracting phone numbers from OpenELM models us-
ing a GPT-Neo surrogate fine-tuned on the Enron dataset. This
raises an additional question: what is the overlap between PII
items extracted using pre-trained models and those extracted
using their fine-tuned counterparts? A large overlap suggests
that the attacker can effectively rely on pre-trained models
as surrogates. In contrast, a reasonable overlap would imply
that combining both surrogate types could offer complemen-
tary benefits, enhancing the overall effectiveness of Private
Investigator. Figure 7 illustrates the overlap between PII items
extracted by each surrogate type when attacking GPT-Neo
models fine-tuned on the Enron dataset. Private Investigator
uniquely extracted 629 email addresses, 440 phone numbers,
and 5,518 names using the pre-trained surrogate, and 587
email addresses, 392 phone numbers, and 5,544 names us-
ing the fine-tuned surrogate. These numbers highlight that
prompts generated by each type of surrogate models can lead
to the extraction of distinct sets of memorized PII items. We
leave further investigation for future work.

5.4 Analysis of Generated Prompts

We conduct an in-depth analysis of the prompts generated
by Private Investigator. We first test how the effectiveness of
our attack varies with prompt length and the strategy used for
selecting generated prompts. We then perform a representa-
tion analysis of the selected prompts to understand how they
effectively extract PII items from target LMs.

Table 4: Impact of prompt lengths. We report the number of
extracted PII items as a function of prompt length.

Prompt Email Phone
Length Enron TREC Enron TREC

1 2471 741 1960 143
2 2399 764 1869 132
3 2310 733 1809 139

Effective prompt length. We evaluate the extraction success
while varying the token length of the generated prompts used
to find optimal queries. By default, Private Investigator starts
with a prompt length of one token.

Table 4 presents the number of extracted PII items as the
prompt length increases from one to three. We observe the
number of extracted records tend to decrease as the prompt
length increases. We believe this trend arises because longer
prompts, while potentially more effective at eliciting specific
PII items by providing clearer contextual cues, are less ef-
fective at covering broader contextual regions that contain a
large number of PII items. In consequence, longer prompts
may be less capable of extracting a large number of PII items
with a single query. It reflects the design objective of Private
Investigator: to maximize the number of distinct PII items ex-
tracted per prompt, rather than targeting specific records. This
objective stands in contrast to recent studies [9], which focus
on prompt engineering to extract individual PII instances.

Table 5: Contrasting the number of extracted PII items by
our attack with and without the prompt selection strategy.

Prompt Email Phone
selection Enron TREC Enron TREC

Uniform 2415 733 2007 138
Our strategy 2513 740 2008 146

Our prompt selection strategy. We contrast the extraction
success of Private Investigator with and without the prompt
selection strategy. Table 5 reports the number of extracted PII
items from GPT-Neo using 20 prompts generated with the
pre-trained model as the surrogate LM. In all cases, Private
Investigator extracted more PII items with the prompt selec-
tion strategy. Notably, Private Investigator extracted 98 more
email addresses from Enron compared to uniform selection.
These results highlight that the prompt selection strategy en-
hances Private Investigator’s performance by identifying and
prioritizing the most effective prompts in extraction.
PII-eliciting directions. Our attack produces prompts that are
effective for PII extraction using a surrogate model, address-
ing the lack of access to the target LM’s fine-tuning dataset.
However, it remains unclear why prompts that are effective on
the surrogate model also succeed on the target model. To in-
vestigate this, we conduct a representation analysis following
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Figure 8: PII-eliciting directions. Cosine similarity between
the oracle PII-eliciting directions and last-token latent vectors
of all single-token prompts (All) or our prompts generated by
the surrogate model (Ours). We run this analysis on GPT-Neo
fine-tuned with Enron. The solid line indicates the median
similarity, and the shaded area denotes the interquartile range.

the methodology proposed by Arditi et al. [4].
They identify directions in a LM’s representation space that

corresponds to specific behavioral patterns, such as refusal
behaviors. Inspired by this, we define PII-eliciting directions—
representation directions associated with prompts that effec-
tively extract PIIs. We compute PII-eliciting directions on the
target model and compare these directions with latent vectors
of other prompts by measuring layer-wise cosine similarity.
A higher degree of alignment indicates that the extraction
prompts generated by Private Investigator on a surrogate LM
are more likely to elicit similar PII-exposing behaviors in the
target LM, thereby explaining their transferability.

Figure 8 illustrates the alignment of PII-eliciting directions
for email address and phone number extraction from GPT-
Neo fine-tuned with Enron. To compute the alignment, we
first derive the oracle PII-eliciting directions from the target.
Using each token in the model’s vocabulary, we generate 200
texts from the target LM and count the number of PII items
extracted. We then identify the 100 worst-performing prompts
by selecting those with the lowest number of extracted PII
items. For the best-performing prompts, we select the top 1%
of prompts based on initial extraction performance, generate
an additional 2,000 texts using each, and rank them to select
the top 100 based on the total number of extracted PII items.
Next, we compute the average last-token latent vectors for
both the best- and worst-performing prompts across all layers.
Subtracting the average vector of the worst prompts from
that of the best prompts results in the oracle PII-eliciting
direction for each layer. For our prompts generated by the
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Figure 9: Numbers of extracted PII items according to the
different hyper parameter values.

surrogate model and all single-token prompts, we compute
the last-token latent vectors on the target model. The figure
presents the layer-wise normalized cosine similarity between
the oracle PII-eliciting directions and the last-token latent
vectors computed from either all single-token prompts (All)
or our prompts generated by the surrogate model (Ours). The
similarity scores are normalized using the highest and lowest
values obtained by the best- and worst-performing prompts
across all layers.

Our prompts exhibit higher alignment with the oracle
PII-eliciting directions compared to all other single-token
prompts. Prompts optimized to induce the surrogate to emit
memorized PII items are also more likely to trigger the target
to generate memorized PII, demonstrating both the effective-
ness and transferability.

5.5 Impact of Attack Configurations
Now we evaluate whether an optimal configuration for Pri-
vate Investigator exists that could further increase the number
of extracted PII items. The PII extraction in Phase II (§4.3)
employs a constant c of prompt score and temperature value
during the generation of texts. We vary these factors individu-
ally while maintaining prompts unchanged.
Constant c. Figure 9a shows the number of memorized PII
items extracted from the two fine-tuned target LMs, GPT-
Neo trained on the Enron and TREC datasets, while varying
the constant c. The constant c is used to balance the two
terms in our prompt scoring function 4.3. As illustrated in
the figure, we observe that Private Investigator achieved the
best performance when c was set to 4. On the other hand,
when c is set to a higher or lower value, focusing primarily
on the exploration term or the exploitation term respectively,
the attack performance deteriorates. This result indicates that
refining the selection of prompts enhances the likelihood of
extracting memorized PII items. We used a fixed value of c
set to four for all experiments in §5.2.
Temperature. Figure 9b shows the number of memorized PII
items extracted by Private Investigator while varying the tem-
perature during text generation in Phase II. The temperature



Table 6: Numbers of extracted PII items using Private Investi-
gator from the GPT-Neo fine-tuned with deduplicated dataset.

Extraction Email Phone Name
method Enron TREC Enron TREC Enron TREC

Carlini (Top-K) 45 563 73 12 4648 4466.
Carlini (Temp) 40 559 89 16 4606 4512
Carlini (Internet) 38 584 69 21 4544 5852
Lukas 20 496 40 24 3981 4168
Ours (Pre) 50 609 94 17 5058 4480
Ours (Fine) 41 659 84 25 4870 5682

value flattens the logit vector of LM’s output. A higher tem-
perature value enables the LM to choose tokens with lower
probability, thereby diversifying the output. This probability
adjustment affects the performance of Private Investigator.

We conducted our attack on two GPT-Neo models trained
with the Enron and TREC dataset. We plotted the total num-
ber of memorized PIIs that Private Investigator extracted from
the two target LMs for two PII types. As shown in the figure,
Private Investigator extracted a large number of phone num-
bers with a temperature of 1, and its performance in extracting
email addresses remains consistent within the temperature
range of 0.8 to 1.0.

Private Investigator showed high performance in extract-
ing email addresses at a low-temperature setting, while it
extracted a relatively smaller number of phone numbers. This
performance difference originates from the varying lengths of
the target PII items. The average number of tokens for email
addresses and phone numbers in the Enron dataset are 9.9
and 6.3, respectively. Sampling tokens with low probabilities
increases the likelihood of incorrectly reconstructing longer
token sequences. Consequently, a low-temperature value en-
ables Private Investigator to extract a high number of email
addresses. To extract a large number of both email addresses
and phone numbers, we used 1.0 as the temperature value for
all experiments in §5.2.

In contrast, Private Investigator and the other baselines ex-
tracted the highest number of personal names at a temperature
of 1.4. Therefore, we use 1.4 as the temperature setting for
PII extraction attacks targeting personal names.

6 Potential Countermeasures

We test the effectiveness of two representative countermea-
sures against Private Investigator: training data deduplication
and differential privacy (DP).

Training data deduplication. LMs are prone to memorizing
(sensitive) records that appear multiple times in the train-
ing data. Deduplication reduces the risk of such memoriza-
tion, thereby lowering the likelihood of data extraction. Prior
work [30] has shown that it can also improve model’s utility.

Table 7: Numbers of extracted PII items using Private Investi-
gator from the GPT-Neo fine-tuned with differential privacy.

Extraction Email Phone Name
method Enron TREC Enron TREC Enron TREC

Carlini (Top-K) 101 26 541 0 7349 1645
Carlini (Temp) 85 22 446 0 7504 2236
Carlini (Internet) 58 22 263 0 6870 1588
Lukas 45 11 263 0 5473 1415
Ours (Pre) 111 28 633 0 7943 1558
Ours (Fine) 92 26 627 0 7954 1945

The datasets we use for fine-tuning contain a large number
of duplicated sequences, primarily due to emails sent to mul-
tiple recipients and replies that include the original messages.
Following prior work [30], we apply a deduplication threshold
of 50 tokens. As a result, we remove ∼799M duplicate se-
quences from the Enron dataset and ∼112M from the TREC
dataset. To assess the impact of deduplication, we fine-tune
GPT-Neo for four epochs on the deduplicated datasets.

Table 6 summarizes the attack results against models
trained with deduplicated data. Compared to our main results
on non-deduplicated models (Table 2), deduplication reduces
the risk of extraction across all attack methods. Deduplication
is more effective in protecting target LMs fine-tuned on En-
ron than those fine-tuned on TREC. This is likely due to the
substantially larger number of duplicate sequences removed
from Enron (∼799M) compared to TREC (112 sequences).
However, we still find that Private Investigator generally out-
performs the baselines across all datasets and PII types.

Unlike previous research suggesting that deduplication may
enhance model performance [30], we observe a notable in-
crease in perplexity after deduplication—from 5.42 to 18.40
on the Enron dataset and from 6.91 to 12.23 on the TREC
dataset. We attribute this performance loss to the nature of the
dataset, which are sourced from email communications and
thus contain a high volume of duplicated sequences. The re-
sulting aggressive deduplication likely removes much useful
data, impairing the model’s learning.

Differential privacy. DP-SGD is a de-facto standard in train-
ing private models [1]. It allows a defender to specify a formal
privacy budget ε, which bounds the amount of private infor-
mation a model can learn during training.

We test the effectiveness of DP-SGD against Private In-
vestigator. To evaluate, we adopt DP-SGD during the fine-
tuning process of the target LMs on both the Enron and TREC
datasets. We use the dp-transformers library [49] to imple-
ment the Transformer model training with DP. Following the
prior work [33], we set ε = 8. The failure probability δ is set
to 1/N, where N denotes the size of the fine-tuning dataset.

Table 7 summarizes our results. Across all extraction at-
tacks, the number of extracted PII items is significantly re-
duced. For example, none of the attack methods are able to



extract a single phone number from the GPT-Neo model fine-
tuned on the TREC dataset. These results indicate that DP
effectively mitigates the risk of Private Investigator. However,
applying DP comes at the cost of model utility: perplexity
increases from 5.42 to 28.63 on the Enron dataset and from
6.91 to 21.51 on the TREC dataset, confirming a notable
degradation in model performance. Despite this, Private In-
vestigator outperforms all baseline attacks across two datasets
and three PII types—except for name extraction on the TREC
dataset—demonstrating its effectiveness even under DP.

7 Related Work

Privacy attacks. Machine learning models optimize their
weights according to the training objectives over training
datasets. During training, models can unintentionally mem-
orize specific features of their training dataset [10], which
makes the models susceptible to various privacy attacks: mem-
bership inference, model inversion, and attribute inference.

Membership inference attacks [7, 8, 40] classify whether a
given data example is included in the model’s training dataset.
It leverages the intuition that machine learning models be-
have differently on the training dataset. Model inversion at-
tacks [3, 15, 51, 55] aim to reconstruct the representatives of
training data corresponding to specific target labels. Attack-
ers can recover training examples by optimizing the input to
maximize the confidence score for the target label. Attribute
inference [16, 26, 35, 52] attacks infer unknown sensitive
attribute values of a given training record.
Extracting training data from LMs. Training data extrac-
tion attacks [10] aim to reconstruct training examples. How-
ever, training data extraction attacks try to retrieve exact exam-
ples (i.e., verbatim strings) in the training dataset. This poses
a critical threat to users because attackers can extract private
information such as email addresses and phone numbers.

Carlini et al. [10] demonstrated that LMs are vulnerable
to unintended memorization, which is persistent and hard to
avoid. It enables attackers to easily extract secret sequences.
Furthermore, they proposed a new metric called exposure
that quantifies how vulnerable the model is to such memo-
rization. Zanella-Béguelin et al. [54] proposed training data
extraction attacks in the context of updating language models.
They conducted extraction attacks by comparing the differ-
ences between two LM snapshots: before and after an update.
However, these attacks are limited to targeting small LMs or
intentionally making target LMs overfitted.

Carlini et al. [11] demonstrated that a real-world large
language model (i.e., GPT-2) is vulnerable to training data
extraction attacks. They proposed a simple yet performant
attack using only black-box query access. Although LLMs
do not suffer from overfitting [39], they successfully extract
hundreds of private sequences including PII, UUIDs, and
URLs. Carlini et al. [9] evaluated which LMs have a tendency
to memorize training data. They showed that memorization

becomes stronger when the model has a larger capacity, a
higher number of repetitions in training data, and more prompt
tokens. Lukas et al. [33] focused on analyzing PII leakage
from LMs. Specifically, they introduce extraction, inference,
and reconstruction attacks with only API access to LMs.
Defense against training data extraction attacks. Training
language models with differential privacy (DP) provides a
prevalent and effective defense mechanism against extraction
attacks [10, 11, 33, 54]. DP provides strong safeguards regard-
ing the privacy of individual examples in training datasets.
The most common way of implementing DP is to adopt the
differentially private stochastic gradient descent (DP-SGD) al-
gorithm to the defender’s model. Specifically, DP-SGD clips
the gradient to a maximum norm and adds Gaussian noise [1].
This technique can successfully mitigate extraction attacks,
preventing models from completely memorizing sensitive
sequences in the training dataset [10].

Deduplicating training data removes duplicate texts within
the training dataset [28, 30]. Lee et al. [30] demonstrated that
deduplicating training data can enhance the language model’s
perplexity while reducing privacy risk. PII scrubbing is a
data curation technique that replaces PII items with mask to-
kens [33]. This prohibits LMs from memorizing certain types
of PII. Moreover, traditional techniques to mitigate overfit-
ting, such as weight decay, dropout, and quantization [22],
can be applied to defend against data extraction attacks, as
these regularization techniques prevent overtraining.

8 Conclusion

We study extractable memorization, with a particular focus
on the emerging deployment scenario of fine-tuned LMs. Un-
like prior work that relies on prompts collected from Internet
sources resembling the training data distribution or manually-
designed ones, our work concerns adversaries who optimizes
the extraction prompts. Our attacker performs this prompt
optimization in a black-box manner. Private Investigator is
our framework that enables this study, and we evaluate an
approach commonly used in black-box adversarial attacks—
leveraging surrogate LMs. For practicality, we select surrogate
LMs from publicly available open-source pre-trained LMs.
In our evaluation, Private Investigator successfully extracted
up to additional 1,254 email addresses, 634 phone numbers,
and 5,087 names from the training data across four LMs,
outperforming the baseline attacks. We also show the comple-
mentary role of Private Investigator in uncovering unique PII
items not extracted by previous methods, thereby contributing
to a more comprehensive exploration of diverse PIIs within
the target training data. Moreover, popular countermeasures
against data extraction effectively reduced the number of ex-
tracted PII items. But we could still extract ∼770 PII items
from private models. Our results imply data extraction as a
practical threat to language models and highlight the urgent
need for future work to develop protections.
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A Prompt Examples

Table 8 shows an example of prompts generated by Private
Investigator across different prompt lengths.

Table 8: Prompts generated by Private Investigator using GPT-
Neo fine-tuned with Enron data to extract email addresses.

Prompt
length Set of prompts

1

’—–’, ’ sniff’, ’ believer’, ’checking’, ’ Sora’, ’ lobbyist’, ’
nonsense’, ’ villain’, ’ hostile’, ’ terror’, ’worthiness’, ’
psyche’, ’ congest’, ’ NYPD’, ’ Canaan’, ’ bordering’, ’
emperor’, ’closed’, ’oso’, ’ courthouse’

2

’—– Anyone’, ’—– Aren’, ’—– sounds’, ’—– unsatisf’, ’—–
makeup’, ’—–ook’, ’—–Whoever’, ’—–Uh’, ’—– defeats’,
’—– aren’, ’—– recons’, ’—– Nothing’, ’—– Might’, ’—–
skept’, ’—– keeps’, ’—–uphem’, ’—– couldn’, ’—–Looks’,
’—– doesn’, ’—– heck’

3

’—– Anyone nonetheless’, ’—– Anyone incor’, ’—–
Anyone reintrodu’, ’—– Anyone REPL’, ’—– Anyone 503’,
’—– Anyone poured’, ’—– Anyone wond’, ’—– Anyone
buttons’, ’—– Anyone unob’, ’—– Anyone stole’, ’—–
Anyone rehe’, ’—– Anyone adv’, ’—– Anyone compl’, ’—–
Anyone sho’, ’—– Anyone 444’, ’—– Anyone harb’, ’—–
Anyone415’, ’—– Anyoneospons’, ’—– Anyone
withdrawals’, ’—– Anyone 311’

B Contextual Similarity

In Table 9, we present the full results of the contextual similar-
ity analysis by comparing the context vectors of PII prefixes
exclusively extracted by Private Investigator (PV), the corre-
sponding context vectors from the training data (GV), and
the context vectors of PII prefixes exclusively extracted by
the baselines (OV). For each PII type, the first and second
rows show the average cosine similarity between PV and
GV, and the average cosine similarity between OV and GV,
respectively. As a result, the cosine similarity between PV
and GV is consistently higher than that between OV and GV
across all PII types, LMs, and datasets. In the third row, we
show the proportion of PIIs for which the cosine similarity
between PV and GV is greater than that between OV and
GV. The results demonstrate that between 60.7% and 100%
of PIIs have higher cosine similarity between PV and GV
than between OV and GV. These results highlight that Private
Investigator-generated prompts are more contextually aligned
with the training data than those generated by the baselines.

C Additional Graphs and Figures

Figures 10, 11 and 12 illustrate Venn diagrams for the total
PII items that the baseline methods and Private Investigator
extracted from the GPT-2, OpenELM, and PHI-2, respectively.

Figure 13 and 14 demonstrate the cosine similarity between
the prompts and the PII-eliciting context. The prompts are
generated using the surrogate LM, GPT-Neo, which is trained
on the Enron and TREC datasets, respectively.

https://www.microsoft.com/en-us/research/project/dp-transformers
https://www.microsoft.com/en-us/research/project/dp-transformers


Table 9: Cosine similarity of context vectors for PIIs extracted by the Private Investigator and the baselines.

PII Type Metrics
GPT2 GPT-Neo OpenELM PHI-2

Enron TREC Enron TREC Enron TREC Enron TREC

Email
Avg. CosSim(PV, GV) 0.739 0.836 0.910 0.933 0.697 0.778 0.602 0.646

Address
Avg. CosSim(OV, GV) 0.648 0.701 0.866 0.877 0.365 0.326 0.308 0.419
CosSim(PV, GV) > CosSim(OV, GV) 72.6% 88.9% 83.0% 93.5% 92.0% 97.3% 85.2% 76.6%

Phone
Avg. CosSim(PV, GV) 0.730 0.887 0.896 0.964 0.511 0.878 0.475 0.755

Number
Avg. CosSim(OV, GV) 0.690 0.652 0.877 0.895 0.294 0.232 0.319 0.332
CosSim(PV, GV) > CosSim(OV, GV) 66.5% 85.7% 73.8% 100.0% 84.9% 98.8% 77.1% 100.0%

Personal
Avg. CosSim(PV, GV) 0.702 0.744 0.882 0.881 0.416 0.453 0.497 0.463

Name
Avg. CosSim(OV, GV) 0.675 0.705 0.870 0.871 0.356 0.401 0.435 0.402
CosSim(PV, GV) > CosSim(OV, GV) 61.6% 71.4% 68.1% 65.1% 60.7% 62.8% 73.2% 60.0%
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Figure 10: Visualizing the overlap of PII items extracted
from GPT-2 by Private Investigator and two baselines:
Carlini et al. (Top-K) and Lukas et al. From top to bottom,
each row corresponds to the extraction of email addresses,
phone numbers, and names. The left column shows results
for models fine-tuned on the Enron dataset, while the right
shows results for TREC.
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Figure 11: Visualizing the overlap of PII items extracted
from OpenELM by Private Investigator and two baselines:
Carlini et al. (Top-K) and Lukas et al. From top to bottom,
each row corresponds to the extraction of email addresses,
phone numbers, and names. The left column shows results
for models fine-tuned on the Enron dataset, while the right
shows results for TREC.
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Figure 12: Visualizing the overlap of PII items extracted
from PHI-2 by Private Investigator and two baselines:
Carlini et al. (Top-K) and Lukas et al. From top to bottom,
each row corresponds to the extraction of email addresses,
phone numbers, and names. The left column shows results
for models fine-tuned on the Enron dataset, while the right
shows results for TREC.
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Figure 13: PII-eliciting directions. Cosine similarity between
the oracle PII-eliciting directions and latent vectors of all
single-token prompts (All) or our generated prompts (Ours).
We run this analysis on GPT-Neo fine-tuned with Enron. The
solid line indicates the median similarity, and the shaded area
denotes the interquartile range.
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(a) Email addresses
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Figure 14: PII-eliciting directions. Cosine similarity between
the oracle PII-eliciting directions and latent vectors of all
single-token prompts (All) or our generated prompts (Ours).
We run this analysis on GPT-Neo fine-tuned with TREC. The
solid line indicates the median similarity, and the shaded area
denotes the interquartile range.
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