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A B S T R A C T

Previous model inversion (MI) research has demonstrated the feasibility of reconstructing images representative
of specific classes, inadvertently revealing additional feature information. However, there are two remaining
challenges for practical black-box MI: (1) minimizing the number of queries to the target model, and (2)
reconstructing a high-quality input image tailored to an observed prediction vector. We introduce Targeted
Model Inversion (TMI), a practical black-box MI attack. Our approach involves altering the mapping network
in StyleGAN, which projects an observed prediction vector into a StyleGAN latent representation. Later, TMI
leverages a surrogate model that is also derived from StyleGAN to guide instance-specific MI by optimizing the
latent representation. These mapping and surrogate networks work together to conduct high-fidelity MI while
significantly decreasing the number of necessary queries. Our experiments demonstrate that TMI outperforms
state-of-the-art MI methods, demonstrating a new upper bound on the susceptibility to black-box MI attacks.
1. Introduction

Model inversion (MI) refers to an adversarial attack that recon-
structs training data or class-representative instances based on the
output from a target machine learning (ML) model. Assuming an ad-
versary who is able to eavesdrop or obtain an output prediction from
a target model, successful MI attacks either reconstruct an input image
corresponding to that specific output or generate a representative image
of the predicted class. Consequently, these reconstructed images expose
privacy-sensitive features that the model owners or its users did not
anticipate revealing through the output predictions.

Prior studies have vastly investigated the feasibility and efficacy
of MI against deep neural networks (DNNs) (Fredrikson et al., 2015;
He et al., 2019). Recently, Yang et al. (2019) proposed a training-
based attack that utilizes a DNN-based inversion model, enabling it to
reconstruct an image based on a given prediction vector. Subsequent
works focused on improving the fidelity of reconstructed images by
adopting generative adversarial networks (GANs) (Zhang et al., 2020b;
Chen et al., 2021; Kahla et al., 2022; Yuan et al., 2023; Han et al., 2023)
or StyleGANs (Wang et al., 2021; An et al., 2022; Struppek et al., 2022).

We posit that there still remains large room for improvement in
conducting practical black-box MI attacks. Specifically, we propose two
key challenges to overcome: (1) minimizing the number of necessary
queries to a target model and (2) enabling instance-specific reconstruc-
tion. Numerous studies have assumed a strong white-box adversary
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who is able to access target model parameters, thereby leveraging gra-
dients in performing MI (Fredrikson et al., 2015; Zhang et al., 2020b;
Wang et al., 2021; An et al., 2022; Struppek et al., 2022). Moreover,
existing black-box MI attacks (Yang et al., 2019; Kahla et al., 2022; Han
et al., 2023) require an excessive number of queries to a target model,
rendering them impractical. For example, attack by An et al. (2022)
required 160k queries to reconstruct a single image. Furthermore, pre-
vious researchers have focused on reconstructing class-representative
images rather than the original input images specific to the correspond-
ing prediction vector. Class-representative images often omit intra-class
differences within their class, which undermines the chances of recon-
structing privacy-sensitive features. For instance, when a target task for
MI is gender classification, class-representative images display a generic
female face, not a specific woman involved in training (Melis et al.,
2019). The difficulty is even exacerbated when a target task involves
large variances in each class. For example. we observed that, with the
NIH Chest X-ray dataset (Wang et al., 2017), previous methods are
unable to reconstruct task-agnostic features such as gender or age.

To tackle the aforementioned challenges, we introduce Targeted
Model Inversion (TMI), a novel MI framework that performs instance-
specific reconstruction while leveraging only a restricted set of black-
box queries to a target model. TMI consists of two steps: preparation
and inversion. In the preparation step, TMI employs a StyleGAN (Karras
et al., 2020) network trained on a dataset in which the underlying
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distribution is similar, yet different from the training set of the target
model. Then, its mapping and discriminator networks are modified to
project the prediction vector to the StyleGAN latent space and to act
as a surrogate model, respectively. These networks are trained using
StyleGAN-generated images and their corresponding predictions from
the target model, eliminating the need for an additional dataset. In the
inversion step, TMI locates the initial StyleGAN latent corresponding
to a target prediction vector observed from the target model by using
the modified mapping network. It then optimizes this latent to generate
an image that prompts the surrogate model to emit a prediction vector
similar to the target prediction vector.

The core idea of TMI is to construct a new mapping network
that approximates a style latent corresponding to the target prediction
vector, which is then further optimized through signals from the sur-
rogate model. Both distilled from a benign StyleGAN network, these
two modified components help significantly decrease the number of
required queries for successful MI while conducting instance-specific
inversion for a given prediction vector.

We evaluate TMI by comparing it with other state-of-the-art white-
box and black-box MI attacks. We demonstrate the superiority of TMI
even with a much smaller query budget; Against a facial recognition
model, TMI achieves 43.5% higher coverage compared to the next
best-performing white-box MI attack and shows even greater improve-
ments when compared to the existing black-box MI methods. These
experiment results demonstrate that the TMI attack enables practical
black-box MI with high fidelity without requiring white-box access to
a target model.

2. Background

2.1. Model inversion attack

Prior research has extensively explored the privacy implication that
MI attacks pose, which contributes to leaking sensitive information
across diverse domains such as healthcare, language modeling, and
speech data (Dibbo, 2023). Fredrikson et al. (2014) introduced the
first MI attack that enable a target ML model trained on medical data
to inadvertently disclose private patient information. Moreover, recent
studies Huang et al. (2022) and Zhang et al. (2022) have demon-
strated the susceptibility of neural language models to MI attacks, thus
leaking sensitive training data, including precise text inputs and person-
ally identifiable information like email addresses and phone numbers
through unintended memorization. Similarly, in the domain of speech
recognition, MI attacks have proven effective in reconstructing spoken
phrases from ML model outputs. A prior study by Pizzi et al. (2023)
highlights the vulnerability of speech recognition systems, wherein the
adversary is able to recover audio samples and voice features directly
linked to the speaker’s biometrics.

Formally, MI attack refers to an adversarial attempt to reconstruct
an input image 𝑥 ∈  based on the target output prediction 𝑦̂𝑡 ∈ 
btained from a target classifier 𝑓 ∶  ↦  . The reconstructed image
′ may inadvertently leak privacy-sensitive features that were never
xpected by the model owner or its users. Formally, the adversary’s
bjective is to derive an inversion image 𝑥′ satisfying the following
quation:
′ = arg min

𝑥∈
𝑝𝑟𝑒𝑑 (𝑓 (𝑥), 𝑦̂𝑡) (1)

with a loss function 𝑝𝑟𝑒𝑑 (e.g., cross-entropy loss or 𝓁2 loss) that
uantifies the dissimilarity between the observed prediction vector 𝑦̂𝑡
nd the target model output 𝑓 (𝑥).

To overcome the challenge of reconstructing high-fidelity images in
n input space (i.e., R3×2242 ) based on a prediction vector in a limited
odel output space (i.e., R, where  refers to the number of classes

n 𝑓 ), previous researches have explored different attack methods.
2

arly MI studies focused on reconstructing low-resolution grayscale
facial images or simple datasets like MNIST. For instance, Fredrikson
et al. (2015) applied an analytic method of finding 𝑥′ in Eq. (1).
Later, Yang et al. (2019) proposed using a dedicated neural network
consisting of multiple transposed convolution layers that directly map
the observed prediction vectors onto the input space, expanding the
attack vector of MI to relatively complicated neural networks. However,
their attack was still limited to reconstructing low-resolution grayscale
input images.

To further improve MI, subsequent studies have proposed lever-
aging the GAN generators (Zhang et al., 2020b; Chen et al., 2021;
Wang et al., 2021; An et al., 2022; Struppek et al., 2022; Kahla et al.,
2022; Yuan et al., 2023; Han et al., 2023). The generator 𝑔 ∶  ↦

 operates as an image prior, generating input images in  from
Gaussian latent vectors in . Instead of directly optimizing in the
input image space  as in Eq. (1), GAN-based approaches perform
optimization within a more constrained space . Recent MI researchers
have adopted StyleGANs (Karras et al., 2019, 2020) to attain higher-
fidelity reconstruction (An et al., 2022; Struppek et al., 2022); they
perform optimization in a newly introduced intermediate latent space
 .

Note that the optimization process in MI typically requires comput-
ing gradients using the target model, thereby assuming the presence
of a white-box adversary who is able to access the target model pa-
rameters. Follow-up studies have proposed attack methods to simulate
the optimization using only black-box queries. These attack techniques
include genetic algorithms (An et al., 2022), decision boundary estima-
tion (Kahla et al., 2022), and reinforcement learning (Han et al., 2023)
as proxies for the optimization process. Although achieving state-of-
the-art performance compared to traditional black-box approaches, we
argue that all the existing methods still fail to address two following
challenges: practicality and instance-specific inversion.

Practicality. Existing black-box MI methods still demand a proh-
ibitively large number of queries to the target model. This poses prac-
tical challenges, particularly when considering the limitations imposed
by Machine Learning as a Service (MLaaS) providers. These providers
often enforce rate limits on API calls, restricting the number of queries
(e.g., Clarifai1 - 5000/day, DatumBox2 - 1000/day). The requirement
for a high volume of queries not only tampers with the practicality
of MI but also raises the risk of attack detection because an abnormal
number of queries can potentially be flagged.

Instance-specific inversion. Test-time MI attacks can be categorized
into two groups (Yang et al., 2019): instance-specific MI and class-
representative MI. The former refers to a scenario in which the attacker
infers a victim’s input instance for an observed prediction output.
On the other hand, class-representative MI focuses on reconstructing
generic images for a single output class in a target model. Whereas
a larger volume of previous research focused on conducting class-
generic MI that reveals class-bound features (Fredrikson et al., 2015;
Yang et al., 2019; Zhang et al., 2020b; Chen et al., 2021; Wang et al.,
2021; An et al., 2022; Struppek et al., 2022; Kahla et al., 2022; Yuan
et al., 2023; Han et al., 2023), instance-specific MI has been largely
understudied. Due to the difficulty of instance-specific MI that requires
the reconstruction of subtle and instance-specific image features, it was
deemed possible under specific conditions, such as the collaborative
inference setting, where intermediate representations and gradients
are accessible to the adversary (Melis et al., 2019; He et al., 2019,
2021). For instance, class-generic MI reveals only class-bound features,
including race, gender, and age, in facial recognition tasks. On the
other hand, the instance-specific MI seek reconstruction of additional
instance-specific features, such as accessories, facial expressions, or
posture, as well as the class-bound features.

1 https://clarifai.com
2 https://www.datumbox.com

https://clarifai.com
https://www.datumbox.com
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Fig. 1. An overview of the TMI attack workflow (right), compared with the original StyleGAN network (left). The StyleGAN components modified for TMI (𝑚′ and 𝑓 ′) are
highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2.2. Attribute inference attack

An attribute inference attack refers to an attempt to infer a private
attribute of a target individual by leveraging benign outputs from a
target system along with other known attributes of that individual.
For example, such an attack may deduce a user’s location, gender, or
political view based on their public information or past behaviors. This
attack involves exploiting the statistical correlations between a user’s
publicly available data points and their private attributes.

This emerging threat spans various application domains, including
social media (Abdelberi et al., 2012; Jia et al., 2017), recommender
systems (Otterbacher, 2010; Weinsberg et al., 2012), and mobile plat-
forms (Michalevsky et al., 2015; Narain et al., 2016). In particular, on
social media platforms, an attacker can examine a user’s page likes
to deduce personal information such as gender and political views
with notable accuracy. Similarly, against a recommendation system, an
attacker can utilize publicly accessible rating scores of items like movies
or apps to infer the user’s gender or age. The efficacy of these attribute
inference attacks highlights the substantial privacy risks associated with
the public availability of user data.

Attribute inference attacks and MI attacks are closely related, shar-
ing the objective of extracting sensitive information from the outputs of
a targeted ML system. Initially, early studies on MI (Fredrikson et al.,
2014, 2015) demonstrated limited reconstruction capabilities, often
restricted to inferring specific attributes rather than fully reconstructing
the input data or its representative image class. However, follow-
up MI studies have strengthened their capabilities, enabling them to
reconstruct images with high fidelity (An et al., 2022; Struppek et al.,
2022).

3. Threat model

We assume a target classifier 𝑓 , providing black-box access where
the adversary is able to query an input image 𝑥 to obtain 𝑦̂, where 𝑦̂ is
the corresponding output prediction in the form of a confidence vector.
The designed goal of TMI is to reconstruct the specific input 𝑥 that
produced the target prediction 𝑦̂𝑡. In general, one does not anticipate an
output prediction to convey subtle details of the corresponding input,
so they are regarded less confidential compared to the input data itself.
This trend is evident in regulations like HIPAA, where the guidelines
for storage and transmission of medical images are more strict than
the rules regarding diagnostic predictions (Moore and Frye, 2019).
Furthermore, in the field of confidential computing that protects the
privacy of user input to a cloud-provided ML service, the prediction out-
puts are excluded from encryption, allowing direct access from cloud
providers with malicious intents (Gu et al., 2018; Narra et al., 2019).
Accordingly, 𝑦̂𝑡 is often leaked, eavesdropped, forged, or carelessly
exposed to cloud service providers or man-in-the-middle adversaries
in real-world scenarios. These exemplary scenarios also include users
posting their prediction results on social media (Yang et al., 2019)
(e.g., celebrity look-alike apps that show the look-alike percentage to
celebrities given facial images as input), split inference settings where
the inference result is sent to different parties (He et al., 2019), or
3

medical professionals sharing diagnosis predictions for educational or
consultative purposes.

The adversary leverages an auxiliary dataset 𝑎𝑢𝑥 of which the
underlying distribution is similar to those of the original dataset 
upon which 𝑓 is trained. It then uses 𝑎𝑢𝑥 to train a StyleGAN net-
work. Alternatively, the adversary can leverage a pretrained StyleGAN
network available on the Internet, which removes the need for 𝑎𝑢𝑥. We
also evaluate TMI on using 𝑎𝑢𝑥 with a significant deviation from the
input distribution of 𝑓 in our ablation study. Lastly, the adversary has
black-box access; it cannot access the model parameters, gradients, or
intermediate results while performing MI. It is only permitted to send
a limited number of benign input queries to 𝑓 and use their output
predictions. We emphasize that the advversary is bound to a predefined
query budget.

We note that the adversary is even capable of populating an arbi-
trary prediction vector 𝑦̂ or using only labels for conducting TMI. Under
this scenario, it can apply label smoothing (Müller et al., 2019) to hard-
coded prediction outputs, each of which represents a corresponding
class, then conduct the TMI attack.

3.1. Adversarial capabilities

The adversary is capable of leveraging an auxiliary dataset 𝑎𝑢𝑥 of
which the underlying distribution is similar to those of the original
dataset  upon which 𝑓 is trained. The adversary uses 𝑎𝑢𝑥 to train
their own StyleGAN network. When the adversary leverages pretrained
StyleGAN networks available on the Internet, it removes the need for
𝑎𝑢𝑥.

Unlike previous MI studies assuming white-box access (Fredrikson
et al., 2015; Zhang et al., 2020b; Chen et al., 2021; Wang et al.,
2021; An et al., 2022; Struppek et al., 2022; Yuan et al., 2023),
we assume a black-box adversary who is unable to access the model
parameters, gradients, and any intermediate results while performing
MI. The adversary is only permitted to send a limited number of input
queries to 𝑓 and obtain their corresponding prediction vectors. Lastly,
we assume an adversary is able to obtain or forge a prediction vector
𝑦̂𝑡 for targeted MI under the scenarios aforementioned.

4. Design

The TMI attack consists of two distinct phases: preparation and in-
version. Given query access to a target model 𝑓 , the adversary leverages
a pretrained StyleGAN network and alters its two components, the
mapping network 𝑚 and the discriminator 𝐷, during the preparation
phase. Once preparation is complete, any observed prediction output
can be fed into the modified network to perform a offline MI attack to
reconstruct its corresponding input image. The original and modified
StyleGANs are illustrated in Fig. 1.
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Algorithm 1 TMI Attack
1: procedure Attack(target 𝑦̂𝑡, iteration 𝑛, step size 𝜂, exploration 𝑒,

mix probability 𝛿)
2: 𝑤0 ← 𝑚′(𝑦̂𝑡)
3: 𝓁𝑏𝑒𝑠𝑡 ← ∞
4: for 𝑖 ∈ {0,… , 𝑛} do
5: 𝑥𝑖 ← 𝑔(𝑤𝑖)
6: 𝑦′𝑖 ← 𝑓 ′(𝑥𝑖)
7: 𝓁𝑖 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑦′𝑖 , 𝑦̂𝑡) ⊳ 𝓁2 Loss
8: if 𝓁𝑖 < 𝓁𝑏𝑒𝑠𝑡 then
9: 𝑥𝑏𝑒𝑠𝑡, 𝓁𝑏𝑒𝑠𝑡 ← 𝑥𝑖, 𝓁𝑖

10: end if
11: 𝑤𝑖+1 ← 𝑤𝑖 − 𝜂∇𝑤𝓁𝑖
12: if 𝑖 is multiple of 𝑒 then
13: 𝑤𝑖+1 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑖𝑥(𝑤𝑖+1, 𝛿)
14: end if
15: end for
16: return 𝑥𝑏𝑒𝑠𝑡
17: end procedure

4.1. Preparation phase: Tweaking StyleGAN

StyleGAN. In a StyleGAN network, the generator is composed of two
parts: a mapping network 𝑚 ∶  ↦  and a synthesis network
𝑔 ∶  ↦  . Unlike traditional GAN generators that take a random
Gaussian vector 𝑧 from the latent space  and pass it through the
synthesis network, 𝑚 first projects 𝑧 to an intermediate latent space
𝑤 ∈  . The synthesis network 𝑔, consisting of consecutive style blocks,
takes 𝑤 as the input for each style block. The style blocks synthesize
images in a progressive manner, starting from low-resolution images
and progressively refining them to higher resolutions. The discrimina-
tor 𝐷 in the StyleGAN network receives the final result from 𝑔 and
determines whether this image is a real image or a synthesized sample.
The minimax game between 𝐷 and 𝑔 gradually makes 𝐷 to better
distinguish fake samples.

An important characteristic of the intermediate latent space 
in StyleGAN is that image features are disentangled, meaning that
different features are represented by separate dimensions in  . This
characteristic is encouraged during the StyleGAN training phase be-
cause (1) generating realistic images is easier when the representation
is disentangled, which allows independent control over different image
attributes, and (2) the separation of style blocks causes different subsets
of  to contribute to different levels of styles, enabling fine-grained
control over the generated images. This characteristic of disentangled
image features in  has been found to be beneficial not only for
style mixing (Karras et al., 2019) or editing (Abdal et al., 2019), but
also as an effective basis for MI attacks. By manipulating specific
dimensions in  , an adversary is able to exert control over certain
features of the generated image, enabling the reconstruction of input
images corresponding to specific prediction vectors.

Tailoring StyleGAN. In TMI, the adversary leverages a publicly avail-
able StyleGAN network, or trains their own using 𝑎𝑢𝑥. In the evalu-
ation section, we consider scenarios, including the use of pretrained
StyleGAN networks, to assess the performance and effectiveness of the
TMI attack.

The original 𝑚 is trained to convert a Gaussian vector 𝑧 into 𝑤.
Therefore, the adversary trains a new mapping network 𝑚′ ∶ ̂ ↦ 
to emit 𝑤 directly from an observed prediction vector 𝑦̂. For this,
the adversary exploits the StyleGAN network to generate triplets, each
of which consists of an image 𝑥 generated via the generator using a
random vector 𝑧, the intermediate latent 𝑤 used to generate 𝑥, and
a prediction vector 𝑦̂ obtained from 𝑓 by querying 𝑥. That is, the
4

Fig. 2. Illustration of latent space exploration in TMI and baseline methods.

adversary generates 𝑔𝑒𝑛 = {(𝑤, 𝑥, 𝑦̂) ∣ 𝑧 ∈ , 𝑤 = 𝑚(𝑧), 𝑥 = 𝑔(𝑤), 𝑦̂ =
𝑓 (𝑥)}. After the dataset is complete, 𝑚′ is optimized until convergence:

arg min
𝜃

E (𝑤,𝑥,𝑦̂)∈𝑔𝑒𝑛

[

(

𝑤 − 𝑚′
𝜃(𝑦̂)

)2
]

. (2)

Although this training procedure does not require white-box access to
𝑓 , it still requires sending a number of queries (i.e., |𝑔𝑒𝑛|) to 𝑓 during
𝑔𝑒𝑛 construction. We set this number to be 100k throughout our main
evaluation, which is significantly smaller than the number of required
queries in prior works summarized in Table 1.

The new mapping network 𝑚′ plays a key role in locating an initial
latent point for each observed prediction 𝑦̂. We expect 𝑚′ to learn a
way of distilling a style given a prediction vector during its training
procedure, which the adversary exploits in the later inversion phase
(Section 4.2). We exemplify the efficacy of 𝑚′ in selecting a reliable
initial latent point 𝑤0 with high fidelity and the superiority of this
approach compared to the prior MI methods.

Lastly, the adversary conducts transfer learning, to make a surrogate
model 𝑓 ′ ∶  ↦ ̂ from the original discriminator 𝐷 in the StyleGAN
network with its last layer changed to match the number of classes in
𝑓 . We update 𝑓 ′ by optimizing the following loss:

arg min
𝜃

E (𝑤,𝑥,𝑦̂)∈𝑔𝑒𝑛
[

(𝑦̂ − 𝑓 ′
𝜃(𝑥))

2] . (3)

The goal of 𝑓 ′ is to emit a prediction vector similar to the one produced
by 𝑓 for each 𝑥 ∈ 𝑔𝑒𝑛. This process does not send additional queries to
𝑓 as it only leverages 𝑔𝑒𝑛 which is already obtained from the previous
step of training 𝑚′.

4.2. Inversion phase: Reconstructing input images

Once the preparation phase is complete, the adversary can launch
the inversion phase on any observed target prediction 𝑦̂𝑡 to reconstruct
its input image. In TMI, white-box optimization using 𝑓 ’s gradients is
replaced with repetitive approximated optimization, starting from 𝑤0
derived from the renewed mapping network 𝑚′:

𝑤𝑖+1 ∶= 𝑤𝑖 − 𝜂∇𝑤
[

𝑓 ′ (𝑔(𝑤𝑖)
)

− 𝑦̂𝑡
]2 . (4)

Algorithm 1 describes the overall process of the inversion phase. The
adversary starts by obtaining an initial latent representation 𝑤0 = 𝑚′(𝑦̂𝑡)
using 𝑚′ obtained from the previous phase (Line 2). 𝑤0 is fed into
𝑔 to generate an image 𝑥 (Line 5). In Lines 6–7, this synthesized
image is fed into 𝑓 ′ to produce a prediction result 𝑦′, and it then
computes the distance between 𝑦′ and 𝑦̂. In Line 11, 𝑤 is optimized via
gradient descent so that the generated image produces an approximated
prediction 𝑦′ that is closer to 𝑦̂.



Computers & Security 144 (2024) 103967H. Jeong et al.

r

Table 1
Comparison of required queries. Number under Attack are the required queries for
each attack attempt, whereas numbers under Prep are required once in the preparation
phase.

Method Query count Image prior

Prep Attack

AMI |𝑎𝑢𝑥| 0 None

TMI (ours) |𝑔𝑒𝑛|
a 0

Style-GANMIRROR-w 100k 160k
P&P 5k 34k
MIRROR-b 100k 10k

RLB-MI 0 80k GANLO-MI 100kb 25k

a We use 100k as default for main evaluation.
b LO-MI does not have an explicit query limit on Prep, however we observed it to
have the highest number of queries in practice. Hence, we regard it as the upper-bound
among baselines.

For every 𝑒 steps, TMI performs 𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑖𝑥, where subsets of 𝑤 are
reset to 𝑤0 with probability 𝛿. This is to avoid 𝑤 from overfitting only to
a specific style, which leads to unnatural images. 𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑖𝑥 prevents
the optimization routine from getting trapped in a local minimum and
allows it to explore different styles and combinations. In addition,
to bound the reconstructed images to the natural image domain, we
applied a clipping technique after 𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑖𝑥. Formally, we computed
the dimension-wise mean 𝜇 and deviation 𝜎 of  from 𝑔𝑒𝑛, then:

𝑤(𝑖) = max( min(𝑤(𝑖), 𝜇(𝑖) + 𝜎(𝑖)), 𝜇(𝑖) − 𝜎(𝑖)), (5)

where ⋅(𝑖) denotes the 𝑖th dimension.3 Finally, the algorithm returns 𝑥
that recorded the closest 𝑦′ to 𝑦̂𝑡.

Note that in TMI, the adversary exploits 𝑓 ′ in an offline manner
to refine the initial latent vector 𝑤0, which is also obtained by an
offline single-pass to 𝑚′. Therefore, TMI does not generate any queries
or require white-box access to 𝑓 throughout the inversion phase. This
makes the attack completely passive once the preparation phase is
complete.

4.3. Summary and differences to prior MI attacks

Previous studies have focused on reconstructing class-generic im-
ages, overlooking the reconstruction of instance-specific features. This
trend comes from the fact that GAN- and StyleGAN-based MI performs
optimization from either a random initial latent (Kahla et al., 2022;
Han et al., 2023) or the latent that yields the maximum target con-
fidence (An et al., 2022; Struppek et al., 2022; Yuan et al., 2023).
Such initial points tend to be biased toward singularities and become
far from the optimal point as shown in Fig. 2. Prior works overcome
this issue by performing a large number of optimization steps, which
naturally demand an excessive number of input queries, thus under-
mining the practicality of MI. Table 1 shows the number of queries for
each MI approach. Furthermore, using a large number of optimization
steps frequently leads to convergence to local optima due to the nature
of greedy updates. In contrast, we employ the customized mapping
network 𝑚′ to directly project the predictions to the latent space. By
pinpointing a reliable starting point via 𝑚′, TMI bypasses most of the
early optimizations present in existing MI attack methods.

The choice of constructing 𝑓 ′ also brings benefits compared with
a naive black-box migration of white-box methods, which would be
to train a surrogate model from scratch as a substitute for 𝑓 in the
optimization routine. Transfer learning from 𝐷 offers a more reliable
and generalized surrogate model due to the fact that 𝐷 has already been

3 Removing the clipping logic results in similar metric scores, however, the
econstructed images often appear visually unnatural.
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Table 2
Inversion performance of TMI and SOTA methods in three different application domains
(facial recognition, chest X-ray diagnosis, and car classification). The top five MI
methods are black-box attacks, and the remaining ones are white-box attacks. The
direction of the arrow following each metric name indicates the direction of better
reconstruction performance. The best attack performances among black-box attacks are
marked in bold.

(a) Facial recognition

Method Acc@1 ↑ Acc@5 ↑ F-dist ↓ Cover ↑ MS-SSIM ↑

TMI .3408±.0061 .6255±.0092 .2950±.0009 .2067±.0126 .2407±.0107
AMI .0443±.0179 .0906±.0278 .3860±.0011 .0033±.0009 .1436±.0010
MIRROR-b .2026±.0267 .4533±.0394 .3564±.0058 .0613±.0059 .2218±.0315
RLB-MI .2568±.0172 .5044±0246 .3804±.0049 .0514±.0038 .2344±.0238
LO-MI .2611±.0079 .5155±.0115 .3921±.0008 .0536±.0038 .1909±.0027

P&P .7779±.0308 .9476±.0076 .2470±.0029 .1440±.0059 .2111±.0407
MIRROR-w .8129±.0228 .9531±.0085 .2491±.0038 .1257±.0048 .2356±.0229

(b) Chest X-ray diagnosis

Method Acc@1 ↑ Acc@5 ↑ F-dist ↓ Cover ↑ MS-SSIM ↑

TMI .5158±.0127 .9999±.0004 .0851±.0006 .2415±.0396 .0766±.0097
AMI .0743±.0080 .8717±.0103 .1788±.0008 .0002±.0002 .0765±.0019
MIRROR-b .7786±.0757 .9983±.0049 .1094±.0183 .0172±.0154 .0709±.0296
RLB-MI .0790±.0000 .8988±.1026 .1827±.0069 .0002±.0000 .0768±.0002
LO-MI .0790±.0000 .9860±.0000 .1769±.0006 .0002±.0000 .0708±.0000

P&P .7250±.2769 .9960±.0057 .1155±.0211 .0084±.0074 .0739±.0038
MIRROR-w .8634±.1339 .9983±.0049 .1138±.0264 .0137±.0140 .0679±.0189

(c) Car classification

Method Acc@1 ↑ Acc@5 ↑ F-dist ↓ Cover ↑ MS-SSIM ↑

TMI .0625±.0075 .1693±.0247 .4901±.0153 .1162±.0035 .1844±.0201
AMI .0000±.0000 .0000±.0000 .6020±.0035 .0000±.0000 .0930±.0028
MIRROR-b .0299±.0038 .1156±.0363 .5619±.0047 .0911±.0027 .1423±.0185
RLB-MI .0000±.0000 .0020±.0023 .5752±.0028 .0000±.0000 .1082±.0170
LO-MI .0000±.0000 .0007±.0003 .5845±.0066 .0000±.0000 .1091±.0050

P&P .0668±.0083 .1836±.0193 .5588±.0808 .0496±.0058 .1625±.0254
MIRROR-w .0533±.0076 .1568±.0592 .5578±.0454 .0336±.0035 .1521±.0203

exposed to numerous styles of images during the training of StyleGAN.
We show that a surrogate model trained from scratch is insufficient to
imitate the optimization path of the target model 𝑓 , in our ablation
study.

5. Experiments

We conducted a comprehensive comparison of the inversion capa-
bility of TMI with state-of-the-art MI attacks, including both black-box
and white-box methods. The black-box methods include MIRROR-b,
RLB-MI (Han et al., 2023), LO-MI (Kahla et al., 2022), and AMI (Yang
et al., 2019), while the white-box methods include MIRROR-W and
P&P (Struppek et al., 2022). MIRROR-b and MIRROR-w represent the
black-box and white-box MI methods using MIRROR (An et al., 2022),
respectively.

5.1. Experimental setup

We selected three tasks for MI: facial recognition, chest X-ray di-
agnosis, and car classification. For facial recognition, we prepared
target networks trained on the FaceScrub (Ng and Winkler, 2014) and
CelebA (Liu et al., 2015) datasets. We used the official bounding-box
information for FaceScrub and use its 530 identities as each class for
classification. For CelebA, we randomly selected 1000 identities from
the entire dataset for classification. With the aligned version of CelebA
images, we further applied 108 × 108 center-crop to align them with
the FaceScrub images.

We used ResNeSt-101 (Zhang et al., 2020a) as the architecture for
𝑓 in our main experiments, along with DenseNet-169 (Huang et al.,
2017) and MobileNet-v3 (Howard et al., 2019) in the additional ex-
periments. As for the adversary’s image prior, we used a pretrained
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Fig. 3. Comparison of the inversion results on facial recognition (left) chest X-ray diagnosis (middle), and car classification (right). Gender and age information for each X-ray
target images are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
StyleGAN2 (Karras et al., 2020) network available online4 trained on
the Flickr-Faces-HQ (FFHQ) (Karras et al., 2019) dataset. We note that
the underlying distribution of the StyleGAN network is different from
that of the target networks, reflecting a practical attack setting. In
our ablation study, we have also verified that TMI remains effective
under conditions of an even greater distribution shift. For chest X-ray
diagnosis, we used a StyleGAN2 network trained on the NIH Chest X-
ray dataset (Wang et al., 2017). The target network was trained using
the PadChest (Bustos et al., 2019) dataset. We used only the front-facing
X-ray images, and selected the seven most frequent findings (normal,
pneumonia, tuberculosis sequelae, emphysema, heart insufficiency, pul-
monary fibrosis, COPD signs) from the PadChest dataset for disease
classification.

For the car classification task, we used a publicly available Style-
GAN2 network5 trained on the LSUN car dataset (Yu et al., 2015); we
then conducted TMI against a target model trained upon the CompCars
dataset (Yang et al., 2015).

We used StyleGAN networks of an image size R3×2562 for face
recognition and chest X-ray diagnosis. For car classification, we used
a StyleGAN network of an image size R3×5122 . We employed same
StyleGAN2 networks as image priors in all baseline methods using
StyleGAN. For other attacks that incorporate GANs (Kahla et al., 2022;
Han et al., 2023), we trained their GANs using the same dataset used
to train StyleGANs6.

Throughout the experiments, the input to the target models and
evaluation classifiers were unified to R3×2242 and R3×2992 , respectively.
Input images were resized to match the respective input dimensions
using bilinear interpolation. StyleGAN generated images given as input
to 𝑓 during the preparation phase should also be cropped & resized
appropriately. We applied 180 × 180 crop, then resized them to match

4 https://github.com/rosinality/stylegan2-pytorch.
5 https://github.com/NVlabs/stylegan2.
6 Pretrained networks uploaded by the authors were unusable since it used

a much tighter crop compared to the FaceScrub official bounding-box. We also
observed worse results when the image priors were replaced with StyleGAN.
6

the input size. We used pretrained ImageNet checkpoints provided
by Torchvision or PyTorch Hub as initial weights for the target and
evaluation classifiers, and replaced their final fully-connected layer
to match the number of classes in respective datasets. 10% of each
dataset were used as the test split. Note that the TMI adversary has
no knowledge of the cropping or resizing logic of 𝑓 , as it is processed
inside the black-box service. Accordingly, 𝑓 ′ ∶  ↦ ̂ receives the full
images generated from StyleGAN, whereas the actual ̂ is calculated
inside 𝑓 upon cropped & resized versions.

In constructing 𝑔𝑒𝑛, we applied the truncation trick, which is a
generally used technique to promote natural image generation with
StyleGAN (Karras et al., 2019). Specifically, we generated images with
truncation 𝜓 = 0.7 in order to avoid unnatural synthesis results. To
increase the dispersion between confidence values for easier training of
𝑚′ and 𝑓 ′, we apply natural logarithm to the prediction vectors from
𝑓 .

For the inversion phase of the TMI experiments, we used 𝑛 = 5000,
𝜂 = 10−5, 𝑒 = 500, 𝛿 = 0.05 for Algorithm 1. Note that despite these
hyperparameters can be fine-tuned to each attack scenario, we fixed
them for simplicity and to demonstrate the robustness of TMI.

For each evaluation scenario, we attacked 1000 randomly selected
samples from the test split of 𝑓 ’s dataset. This simulates the real-
world attack, where the target images correspond to one of 𝑓 ’s classes,
however not directly included in its training set. For TMI and AMI in
Table 2, we repeated the experiment 8 times and reported the mean
and standard deviation of each metrics. For the other baseline attacks,
we selected the 8 best candidates from their final output and report
their mean and standard deviation.

5.2. Evaluation metrics

To evaluate the effectiveness of TMI, we employed various metrics
to assess the quality of the inversion results and the instance-specific
MI capabilities. Accuracy and feature distance are widely used metrics
in the MI literature (An et al., 2022; Struppek et al., 2022; Wang et al.,

https://github.com/rosinality/stylegan2-pytorch
https://github.com/NVlabs/stylegan2
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Fig. 4. Attribute accuracy on facial recognition (left) and chest X-ray diagnosis (right). For age, we reported the mean absolute error.
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021; Zhang et al., 2020b). We also used three additional metrics, MS-
SIM, class-wise coverage, and attribute accuracy to demonstrate the
apabilities of instance-specific MI.

ccuracy (Acc@1 and Acc@5). To assess the resemblance of the
reconstructed images to the target image class, we computed the pro-
portion of reconstructed images that were classified into the same class
as the target image by 𝑓𝐸 , an evaluation classifier using Inception-
3 (Szegedy et al., 2016) trained on the same dataset as 𝑓 . This

proportion represents the accuracy of the reconstruction process, in-
dicating how well the reconstructed images capture the features of the
target class in general.

Feature distance (F-dist). The feature distance metric captures
the similarity between two images at an intermediate representation
layer (Dosovitskiy and Brox, 2016) of 𝑓𝐸 , which quantifies the per-
ceptual similarity between the images. Specifically, we computed the
average 𝓁2 distance between features extracted from the penultimate
layer of a 𝑓𝐸 , hence computing the similarity in high-level visual
features perceived by the classifier (Zhao et al., 2021).

Multi-scale structural similarity (MS-SSIM). The multi-scale struc-
tural similarity index (MS-SSIM) (Wang et al., 2003) is an image quality
metric that extends the single-scale SSIM by assessing the structural
similarity between two images across multiple resolutions in order
to simulate various viewing conditions. This metric evaluates image
details across different scales by downsampling and integrating the
SSIM values at each scale using a weighted geometric mean. MS-SSIM is
widely used for evaluating image reconstruction due to its capability to
capture image details at various scales. This allows it to discern subtle
differences and prioritize important visual information.

Class-wise coverage (Cover). We adopted the class-wise coverage
metric to assess whether the reconstructed samples successfully cap-
tured the intra-class diversity, which is crucial in the instance-specific
MI task. We use a slightly modified version of the original notion
introduced by Naeem et al. (2020). This metric evaluates the extent to
which the reconstructed samples cover the range of variations within
each target class. It measures the fraction of target images that have
a reconstructed sample in close proximity, providing insight into how
well the reconstruction process captures the intra-class diversity. The
class-wise coverage is formally defined as follows:

𝙲𝚘𝚟𝚎𝚛 = 1
𝑁

𝑁
∑

𝑖=1
1∃ 𝑗 s.t. 𝑌𝑗 ∈ 𝐵(𝑋𝑖 , 𝑁𝑁𝐷𝑘(𝑋𝑖)). (6)

here 𝑁 and 1(⋅) are the number of samples and the indicator function,
espectively. Whereas the original notation considered the intermediate
epresentations of real and fake samples as 𝑋𝑖 and 𝑌𝑖, we replaced them
ith the intermediate representations of the target and reconstructed

mages, respectively. 𝐵(𝑥, 𝑟) indicates a sphere in the representation
7

pace around 𝑥 with radius 𝑟, and 𝑁𝑁𝐷𝑘(𝑋𝑖) denotes the distance
rom 𝑋𝑖 to its 𝑘th nearest neighbor. We used 𝑘 = 1 throughout our
valuations.

ttribute accuracy. To evaluate the success of feature reconstruc-
ion, we trained attribute classifiers using the Inception-v3 architec-
ure (Szegedy et al., 2016), where the final layer of the classifier was
djusted to accommodate the number of categories for each attribute.
pecifically, we trained attribute classifiers using the respective at-
ribute labels available in CelebA and the gender and age information
n PadChest.

.3. Experimental results

.3.1. Main experiment
Fig. 3 shows the inversion results obtained by other MI methods and

MI. It is evident that the samples reconstructed using TMI are visually
ore similar to their corresponding original images, making it easier to

dentify them as the same identity. We also note that TMI reconstructs
acial expressions (columns 1, 2, 4), and instance-specific attributes
columns 3, 5) such as glasses. The other methods did succeed in
econstructing some general features of the original images. However,
hey failed to capture the fine and specific characteristics of the original
mage. Moreover, we observed that RLB-MI, LO-MI, and AMI methods
re not suitable for real-world MI attacks on high-dimensional images.
hile the authors had demonstrated their success on R3×642 tightly-

ropped images, we found that these black-box attacks experienced
ifficulties in reconstructing R3×2242 input images. In contrast, the
hite-box attacks exhibited high accuracy since they explicitly took

nto account the classification loss on the target model during their
ptimization steps.

Table 2 provides the quantitative evaluation results of TMI, along
ith state-of-the-art MI methods. The experimental results clearly
emonstrate that TMI outperformed all other black-box MI attacks
ccording to the reported metrics. These results confirm the superiority
f TMI in conducting practical black-box MI.

We emphasize the significant decrease in the number of required
ueries in performing MI. When assuming a scenario in which the
dversary aims to generate 530 class facial images in the FaceScrub
ataset, TMI requires the default query budget of only 100k queries
o a target model in achieving the reported metrics in Table 2. In
ontrast, MIRROR-w and MIRROR-b, which performed the best beside
MI, required 84 900 k = 100 k+160 k×530 and 5400 k = 100 k+10 k×530
ueries, respectively. Outside of AMI which failed to produce any
eaningful results, LO-MI required the least number of queries among

he baselines: 1160 k = 100 k + 2 k × 530, which is still significantly
igher than the one that TMI required.

We also investigated the change in reconstruction performance with
ifferent query budgets: 100, 500, 1k, 5k, 10k, 50k, and 100k (default).
he query budgets denote the total number of queries allowed to attack
very label (i.e., 530 attacks in case of FaceScrub). In TMI, this directly
ranslates to the size of 𝑔𝑒𝑛 that is used during the preparation phase to
rain 𝑚′ and 𝑓 ′. Note that we were unable to evaluate the performance
f the baseline methods using 100, 500, and 1k query budgets since
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Fig. 5. Changes in attack performance while varying the query budget. White-box methods are represented by dashed lines.
Table 3
MI performance across scenarios involving different target domains and 𝑓 . A→B
indicates that the attacker utilizes an image prior (i.e., StyleGAN) obtained from A
to attack 𝑓 that was trained to classify B images.

Scenario Arch Acc@1 Acc@5 F-dist Cover

FFHQ
↓

FaceScrub

MobileNet-v3 .3380 .6390 .2878 .1813
ResNeSt-101 .3408 .6255 .2950 .2067
DenseNet-169 .3265 .6035 .3027 .1967

FFHQ
↓

CelebA

MobileNet-v3 .2080 .4345 .9215 .2343
ResNeSt-101 .2880 .5520 .8503 .2738
DenseNet-169 .2015 .4335 .5751 .2965

CXR14
↓

PadChest

MobileNet-v3 .3540 .9880 .1161 .2316
ResNeSt-101 .5158 .9999 .0851 .2415
DenseNet-169 .4840 .9940 .1188 .1972

each attack per class requires a certain number of queries. For example,
attacking a 530-class facial recognition model with a 1k query budget
allows only two queries for each class.

As shown in Fig. 5, the overall MI performance decreases as the
query budget becomes smaller. However, TMI consistently outperforms
the baseline attacks across different query budgets. We also note that
TMI holds a distinctive advantage of requiring zero queries to a target
model after the preparation phase, which significantly facilitates the
reconstruction of inputs for a large number of prediction vectors.
Observe that with only 5k queries, TMI attained similar performance
to MIRROR-b without a query budget; which required a total of 5400 K
queries, resulting in a 1080 times decrease in the query budget.

For chest X-ray diagnosis, TMI significantly outperformed all other
methods by a large margin. The performance gains can be attributed
to the unique characteristics of the chest X-ray classifier. Unlike facial
recognition, where each class corresponds to a single identity, the
classes in the chest X-ray classifier encompass a diverse range of iden-
tities and features. For example, the pneumonia class includes samples
from both male and female individuals, and the age of the subjects
spans across various age groups. In this particular context, we argue
that traditional metrics such as Acc@1 and Acc@5 are not indicators of
instance-specific privacy leakage. Thus, we additionally used intra-class
metrics (i.e., F-dist, Cover, and attribute accuracy) to evaluate TMI.

Fig. 3 presents a comparison of the inversion results on chest X-ray
images. Notably, TMI successfully captures private information such as
gender and body shape. For example, the highlighted TMI inversion
results in the second row clearly shows a female X-ray image, even to
the human eye, due to the accurate reconstructions of the chest shape
when comparing its reconstruction quality with the other baseline
results.

A similar trend is observed in the car classification task, where TMI
is the only method capable of reconstructing the orientation and color
of the input image. We note that each class in this classification task
corresponds to a specific car model, which varies in color and orien-
tation. Consequently, class-representative inversion tends to produce
seemingly random results, as shown in Fig. 3.
8

Fig. 6. Qualitative demonstration of attribute reconstruction. Each two target images
belong to the same class.

Table 4
MI performance of different initialization methods. Best cases are marked in bold.

Method Acc@1 Acc@5 F-dist Cover

𝑚′ only .0840 .2620 .1523 .0817
Maximum target confidence .0900 .2200 .4135 0
Random initialize .0010 .0100 .4941 .0309

In addition to ResNeSt-101, we further investigated how MI per-
formance varies across different architectures for 𝑓 ; DenseNet-169 and
MobileNet-v3. The tendency of the results were constant to the main
evaluation throughout all configurations (Table 3). For example, in the
FFHQ→FaceScrub scenario, TMI surpassed all black-box baselines
in every metric. This suggests that TMI is generally applicable across
various target systems under a truly black-box setting, i.e., in a target
model-agnostic manner.

To emphasize the capability of targeted MI, we further conducted
comparison evaluations that measure the attribute accuracy across
instance-specific attributes in Fig. 4. As the figure shows, TMI strictly
outperformed all other methods in capturing subtle and intra-class
features. For example, the attribute classifier for checking glasses on
the TMI reconstructed facial images reported an accuracy of 80.7%
while MIRROR-b and P&P reported 69.8% and 68.3%, respectively.
Attribute reconstructions are better observed qualitatively in Fig. 6;
sample-specific attributes such as glasses, skin tone, hair color and gaze
are accurately reconstructed, even where the attribute is not correlated
to the class itself. Also, when inferring the ages of the reconstructed
chest X-ray images, TMI-generated images contribute to reporting a
mean absolute error (MAE) of 8.1198, significantly outperforming all
other methods. These results highlight the capability of TMI to capture
instance-specific private information compared to the baselines.

5.3.2. Ablation study

Effect of 𝑚′. In order to assess the efficacy of the new mapping
network 𝑚′ in locating a reliable initial latent point (𝑤0), we evaluated
the synthesis result directly from 𝑤0 without the optimization steps
(i.e., 𝑔(𝑤0)), and compared it with initialization techniques of existing
methods. The results in Table 4 suggest that 𝑤0 is closer to the target
image in terms of F-dist and Cover compared to random initialization
or maximum target confidence. Note that maximum target confidence
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Table 5
Change in attack performance when replacing 𝑓 ′ with 𝑓 .

Performance gain

Acc@1 ↑ 0.3408→0.8264 (142.49% ↑)
Acc@5 ↑ 0.6255→0.9534 (52.42% ↑)
F-dist ↓ 0.2950→0.1975 (33.05% ↓)
Cover ↑ 0.2067→0.2619 (26.71% ↑)

Fig. 7. Qualitative (a) and quantitative (b) comparison of TMI and 𝑓 ′′.

achieves high Acc@1 due to its selection policies, however, falls behind
in every other metrics. This indicates that the latent point drawn from
such initialization technique is merely an overfit to the target class,
which fails to capture all intra-class features.

In addition, we investigated the attack scenario of using the original
model instead of the surrogate model. This setting demonstrates the
effect of 𝑚′ in an undisturbed setting, where the following optimization
steps no longer have to use an imperfect substitution of the target
model. As listed in Table 5, attack performance is improved by an
average of 63.7%, outperforming even the white-box attacks across
all four metrics. This also indicates that the strategy of retraining a
mapping network can be applied to white-box TMI attacks for better
reconstruction performance.

Effect of 𝑓 ′. A naive black-box migration of the white-box approaches
would be to train a surrogate model from scratch, instead of using 𝑓 ′

(which is transfer-learned from 𝐷 of the StyleGAN network). Similar to
𝑓 ′, this new surrogate model works as a substitute for 𝑓 , removing the
white-box requirement. We refer to such MI attack scenario as 𝑓 ′′. Here,
we empirically demonstrate that 𝑓 ′′ is insufficient to provide reliable
optimization, thus justifying the use of 𝑓 ′. Reconstructions from 𝑓 ′′

only succeed in capturing some general coarse-grained features, failing
to reconstruct the instance-specific details or even the identity, as
can be observed from Fig. 7, both qualitatively and quantitatively.
We argue that it is necessary to use 𝑓 ′ and take advantage of its
pre-exposure to various styles during the StyleGAN training.

Using a Different GAN Architecture. We investigated TMI’s efficacy
when using a GAN architecture other than StyleGAN. We conducted
an additional experiment with UNet-GAN (Schönfeld et al., 2020)
pretrained on FFHQ and compared the results to the main experiment.
For the surrogate model 𝑓 ′, we used the left-half of the UNet-GAN’s dis-
criminator. Since UNet-GAN does not incorporate a mapping network, a
custom mapping layer was trained from scratch. Observe from Table 6
that while the overall performance is slightly decreased compared to
TMI with StyleGAN, it is still more effective than MIRROR-b. The slight
drop in performance is largely due to the entangled latent space of
UNet-GAN, where the latent space  is directly used without mapping it
to an intermediate disentangled latent space  in advance. This result
indicates that while StyleGAN is still the most effective image prior to
be utilized, other GAN-based methods can generally benefit from the
suggested approach of leveraging a new mapping layer and distilling
9

the discriminator for a surrogate model.
Table 6
Attack performance of TMI with UNet-GAN, compared to the original TMI attack and
MIRROR-b.

Acc@1 Acc@5 F-dist Cover

TMI .3804 .6255 .2950 .2067
TMI with UNet-GAN .2201 .4811 .3254 .2063
MIRROR-b .2026 .4533 .3564 .0613

Fig. 8. Target FaceScrub images (top) and TMI-reconstructed using StyleGAN trained
on art-style face portraits (bottom).

Using 𝑎𝑢𝑥 with Significant Deviation from . Sometimes the TMI
adversary may not be able to obtain 𝑎𝑢𝑥 with a distribution similar
to . In this experiment, we show that TMI is robust enough to
capture features of the target images 𝑥 ∈  that are embedded in the
distribution of 𝑎𝑢𝑥, even when  and 𝑎𝑢𝑥 as a whole have distinct
distributions. We used a StyleGAN trained on art portraits7 as the image
prior to attack a ResNeSt-101 network trained to classify FaceScrub
identities. Fig. 8 clearly demonstrates that TMI can successfully recon-
struct input images with high fidelity, including facial features, posture,
and rough color.

6. Mitigation

Label-only. To prevent TMI attackers from obtaining additional in-
formation from the model output, one could modify the system to
return only the final decision (i.e., the predicted label) instead of the
full confidence vector. However, we found that a slight modification
to the TMI workflow extends the attack to invalidate such defense.
Specifically, we implement label smoothing on each prediction output
received from the target model, converting each label prediction into
a pseudo confidence vector. Given the pseudo confidence vector, TMI
can operate in the same way as the original version.

Table 7 demonstrates that the attack is still effective in label-only
situations. While there is a slight drop in performance compared to
the original use-case, notice that the attack continues to surpass the
capabilities of MIRROR-b in all metrics outside of F-dist.

Random Noise. TMI utilizes subtle changes in the confidence vector
that respond to certain styles in the input images. Therefore, to reduce
TMI’s attack performance, one could inject subtle noise to the predicted
output while preserving the prediction label. Table 7 demonstrates
the mitigation effect showing that its performance dropped below
MIRROR-b, in particular, F-dist and Cover metrics are greatly degraded
from the original TMI experiment (21.1% and 81.6%). This suggests
that random noise successfully distracts TMI from reconstructing subtle
features.

7. Discussion and limitations

We demonstrated that TMI is effective in reconstructing inputs even
when the adversary is able to only obtain labels, not their prediction

7 https://github.com/ak9250/stylegan-art.
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Table 7
MI performance on label-only setting and random noise defense. The original TMI and
MIRROR-b experiment results are also included for comparison.

Method Acc@1 Acc@5 F-dist Cover

TMI (original) .3804 .6255 .2950 .2067
TMI against label-only .2399 .4800 .3637 .1167
TMI against random noise .1792 .4297 .3739 .0381
MIRROR-b .2026 .4533 .3564 .0613

vectors (Section 6). One way to mitigate this threat is to inject Gaus-
sian noise into prediction vectors, effectively deterring the adversary’s
attempts using TMI. However, the adversary can still conduct label-only
attacks, avoiding to use the injected noise. We leave developing more
robust defenses against TMI for future work.

One limitation of TMI is its dependence on the pretrained StyleGAN
model. When this pretrained model is unavailable or trained with
data instances whose underlying distribution differs from the target
dataset (e.g., performing MI attacks against a facial recognition clas-
sifier with a chest X-ray dataset), the performance of TMI diminishes
in reconstructing input images.

TMI depends on the generative capability of a StyleGAN network,
making its success heavily dependent on the expressiveness of the
underlying image prior. Unfortunately, several data domains are chal-
lenging to model through a generative prior due to either a lack of data
or the generator’s limited expressiveness. Training a generative model
in such domains often results in model collapse and non-convergence.
Although prior studies have proposed methods to mitigate these is-
sues (Salimans et al., 2016), domains with extremely high variability
still remain difficult to be captured properly. For instance, complex
natural scenes, which feature a vast diversity of objects and intricate
spatial relationships, are notoriously difficult to model. Furthermore,
even in cases where a generative model is present, data points not fully
represented in the manifold of this generative model will show poor
reconstruction, thus impeding the success of MI attacks using TMI.

Lastly, the success of TMI depends on the size of 𝑔𝑒𝑛, as shown
in Fig. 5. TMI requires the attacker to send queries comprised solely
of synthetic images to the target model. However, we emphasize that
TMI demands a significantly smaller number of queries compared to the
other state-of-the-art MI attacks, advancing the current lower bound in
conducting effective MI attacks.

8. Conclusion

We have proposed TMI, a novel black-box MI attack that achieves
instance-specific MI using a limited query budget. TMI alters the map-
ping network of a benign StyleGAN network to find a reliable initial
latent point corresponding to a target prediction output, then performs
further optimization by leveraging a surrogate model distilled from
the StyleGAN discriminator. TMI significantly decreases the number
of required queries while improving the reconstruction quality over
state-of-the-art black-box MI methods.
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