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Abstract
Recent years have seen an unprecedented increase in phishing at-
tacks, threatening the security of Internet users. In response, studies
have explored defenses that automatically identify the intentions
of suspicious websites. Most defenses work by employing machine
learning models that examine different components of a website,
e.g., logos or areas asking login credentials. However, the robust-
ness of this emerging approach against evasive adversaries is not
well understood. In this work, we evaluate the robustness of recent
phishing detectors against evasion attacks. We first conduct an ex-
tensive literature review to identify common mistakes in evaluating
their adversarial robustness. We then develop evasion attacks to as-
sess the true robustness of reference-based phishing detectors. Our
evaluation of state-of-the-art phishing detectors, PhishIntention
and Dynaphish, shows that they are significantly less robust in ad-
versarial settings than demonstrated in the original studies. We also
analyze the factors attributing to these vulnerabilities and suggest
potential research directions for developing robust detectors.

CCS Concepts
• Security and privacy→ Software and application security;
• Computing methodologies→ Machine learning.
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1 Introduction
An emerging approach to combat unprecedented phishing attacks
is to employ reference-based phishing detectors [1, 2, 8, 14, 24, 25,
36]. These detectors compare the visual characteristics of phishing
websites to a curated list of references, such as logos from known
benign brands. Once a match is found between an inspected website
and the references, they verify if the website URL is the legitimate
one known for the matched brand. If the verification fails, the URL
is added to the browser blocklist to safeguard Internet users.

Recent detectors employ neural networks to compare and ana-
lyze visual characteristics. While neural networks offer an increase
in detection performance, they are known to be susceptible to
small input perturbations [15]. This vulnerability allows an adver-
sary to craft adversarial examples [15, 27]: test inputs with human-
imperceptible perturbations carefully-crafted to fool a target classi-
fier. However, the robustness of recent phishing detectors to adver-
sarial attacks has been understudied. While prior work [1, 24–26]
has shown some resilience to adversarial examples, the evaluation
practice has been far from the golden standard suggested by the
literature on adversasrial examples and defenses [10].

In this paper, we study the adversarial robustness of recent
reference-based phishing detectors, especially those employing
neural networks as a key component. We ask the question: How
vulnerable are these phishing detectors to adversarial examples, and
how different is the vulnerability our work will show compared to
prior research? This is a particularly important question to answer
because phishing detectors are deployed in and exposed to adversar-
ial settings, where a motivated attacker is likely to evade detection
to increase the reachability of their attacks to Internet users.
Contributions. We first conduct an extensive literature review on
reference-based phishing detectors and categorize their common
mistakes in evaluating adversarial robustness into three categories:
(1) Gradient masking. Recent work [24–26] proposes a function
that quantizes layer activation (i.e., StepReLU) and shows its effec-
tiveness in rendering attacks ineffective. We find that this practice
has been warned against by Athalye et al. [4] as a form of security
through obscurity. (2) Weak attacks. We find that several studies
employ weak adversarial examples to test their resilience. This
occurs due to the incorrect implementation of existing attacks or
assuming an adversary without knowledge of the target system’s
internals. (3) No end-to-end evaluation. No prior work conducts ro-
bustness evaluations in an end-to-end manner in a practical setting.
Most prior work focuses on testing individual neural networks they
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employ, making it difficult to assess the holistic impact of evasive
adversaries on phishing detectors.

Second, we bridge the knowledge gap between the reported ro-
bustness in prior work and the actual robustness by proposing eva-
sion attacks. We focus on the state-of-the-art detectors, PhishInten-
tion [25] and DynaPhish [26], composed of three key components:
an object detection model, the OCR-aided brand recognition model,
and the CRP classifier. We present three evasion attacks designed
to fool the decisions of the three key models and demonstrate an
attack success rate of 84.1–95.6%, even under scenarios where their
StepReLU defense has been deployed. We highlight a stark con-
trast to the results reported in prior work [24, 25], which achieves
approximately 0% attack success in the presence of StepReLU.

Third, we evaluate the robustness of phishing detectors in end-to-
end settings to evaluate the real-world implications of our attacks.
To this end, we propose three evasion attacks: the No-object attack,
designed to prevent any objects from being detected in a website
screenshot, the Triple-jump attack, which aims to fool all the subse-
quent classifiers, and the Logo masking attack, which operates in a
black-box manner by masking logos. In contrast to the prior work,
the first two attacks evaluate how an adversary can full the entire
detection pipeline while having full knowledge of only specific
models or components. We also employ techniques to enhance eva-
sion success under practical constraints imposed by additional steps
a detector employs, such as converting floating-point perturbations
to pixel values or altering the resolution of screenshots before they
are processed by the models. Our evaluation shows a recall drop-
ping to 0.03–0.33, demonstrating the practicality of evasion attacks
in a real-world deployment setting. It also implies that combin-
ing models with different functionalities does not necessarily offer
significantly improved robustness.

We lastly study two potential countermeasures against our eva-
sion attacks: one that makes the detection pipeline robust to human-
imperceptible perturbations, and the other is the designs of HTML
components, such as logos, with features that make evasion more
difficult to achieve. Employing cost-effective denoising techniques,
such as Gaussian blurring, before a model processes a website
screenshot reduces the attack success rate, while preserving the
model’s performance on unperturbed inputs. We also review exist-
ing defenses designed to counter adversarial examples and explore
their potential applications within the phishing detection frame-
work. Moreover, we analyze the cases where our evasion attack
fails and find that logos with simplified text and fewer embellish-
ments make it more difficult for an adversarial attack to fool a target
detector. We hope our work inspires future work on (accurately)
evaluating the robustness of phishing detectors and developing
defenses to prevent evasive attempts.

2 Background
Here we provide an overview of the necessary background knowl-
edge: reference-based phishing detectors and adversarial attacks.

2.1 Neural Networks
A neural network (NN) is a function 𝑓𝜃 : X → Y that maps an
input x ∈ X to an output y ∈ Y. In supervised settings, such as
classification over 𝑘 classes, the output becomes a probability vector

y ∈ [0, 1]𝑘 , while in generative modeling, the output y ∈ R𝑑 shares
the same dimension as an input. A NN consists of a sequence of
layers 𝑙𝑖 parameterized by a set of tensors 𝜃 , including weights𝑤𝑖

and biases 𝑏𝑖 . Each layer 𝑙𝑖 runs a linear transformation of an input,
defined as 𝑙𝑖 (x𝑖 ) = 𝜎 (𝑤𝑖 · x + 𝑏𝑖 ). A non-linear activation function
𝜎 (·), such as ReLU, along with additional layers, such as pooling,
dropout, or batch-norm, are applied to the output. In feed-forward
networks, the last fully connected layer are referred to as the penul-
timate layer, and the input to this layer is called features. Since many
phishing detectors use NNs for classification, our work focuses on
feed-forward networks for this purpose, where the parameters 𝜃
are trained to minimize the prediction error of an input. During
training, we iteratively update 𝜃 by back-propagating the error
between the predicted output 𝑦𝑝 = argmax𝑘 y and the oracle label
𝑦𝑡 . Training is stopped when 𝑓𝜃 converges to an acceptable error
rate or after a sufficient number of iterations, at which point we
save 𝑓 along with its parameters 𝜃 . During testing (or inference),
we load 𝑓 and its parameters 𝜃 to compute the prediction for a
given test input, which is typically not part of the training data.

2.2 Reference-based Phishing Detectors
Phishing detectors are designed to identify whether a website is
not a legitimate website. Once a website is identified as phishing,
the detector reports its URL to third parties. These URLs are then
added to blocklists, such as Google Safe Browsing [6, 16], to prevent
Internet users from browsing these websites.

Reference-based phishing detectors. These detectors work by com-
paring domain-brand consistencies. They utilize a predefined refer-
ence list of domains and brand representations, such as logos. Given
a website, the detector first extracts the logos from its screenshots
and then compares themwith the references to identify anymatches.
Modern phishing detectors employ machine-learning models to
extract the brand representations from a screenshot and compare
them with the references [1, 2, 8, 14, 24, 25, 36].

Figure 1 illustrates the workflow of the most recent system for
reference-based phishing detection, DynaPhish, proposed by Liu
et al. [26]. DynaPhish employs the phishing detectors presented
by the prior work: Phishpedia [24] and PhishIntention [25], and
on top of them, proposes additional mechanisms for keeping the
reference list up-to-date. The backbone of its detection pipeline is
composed of three neural network classifiers: an object detector,
an OCR-Siamese model, and a credential-requiring page (CRP) clas-
sifier. The object detector uses the Faster R-CNN architecture [32]
and identifies all components, such as logos or forms for user inputs,
from a website’s screenshot. The OCR-Siamese model identifies
the brand by determining whether the logos detected by the object
detector match those in the reference list. Is uses the OCR model
A(·) and the Siamese model R(·), which is based on the ASTER
encoder architecture [33] and the ResNetV2-50 architecture [18, 21],
respectively. Unlike typical Siamese models that identifies how sim-
ilar two different inputs are, this model compares the similarity of
the output embedding 𝑒 of the logo 𝑥 with the predefined embed-
dings in the reference list. The OCR-Siamese model computes 𝑒 as
follows:

𝑒 = R(𝑥) ⊕ A(𝑥),
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Figure 1: Illustration of how a state-of-the-art reference-based phishing detector inspects a suspicious website.

where 𝑥 is the logo, R is the ResNetV2-50 model, and A is the
Aster encoder model. The model concatenates the outputs of R
and A for the logo 𝑥 . The model then uses cosine similarity to
compare the embeddings. If there is a match, the system compares
the domain of the website with the known domain of the logo
brand. If the domains differ, the system reports the website as
phishing. Otherwise, the system continues its inspection using
the CRP classifier. It checks whether the website asks for a user’s
credentials. If the website does ask, the system performs a further
investigation to identify its intention. The CRP classifier, based
on the same ResNetV2-50 architecture, takes both the screenshot
and the detected objects from the object detector. Please refer to
Appendix A.1 for more details about the OCR-Siamese model.

DynaPhish introduces two additional mechanisms to keep the
reference list up-to-date: brand knowledge expansion and web
interaction. If the OCR-Siamese model cannot find a match from
the reference list, the brand knowledge expansion module performs
a Google search with the detected logo and stores the logos from a
few website screenshots appearing in the Google search. Upon the
addition, the system runs its detector, PhishIntention, againwith the
updated reference list. The web interaction module checks whether
a website accepts any random credentials. It uses the components
identified by the CRP classifier, such as forms for user ID and
password, and the log-in button. In the case of a website showing
only the log-in button, it clicks through the button a few times until
the website displays the log-in forms. Themodule automatically fills
the forms with random credentials, and if the log-in is successful,
DynaPhish reports the website as phishing.

Our work studies the adversarial robustness of these representa-
tive, state-of-the-art reference-based phishing detectors.

2.3 Adversarial Attacks on Neural Networks
Neural networks are vulnerable to small perturbations to their
inputs [35]. This vulnerability enables adversarial attacks: an adver-
sary can craft human-imperceptible perturbations and add them
to a target network’s input to alter its classification result for eva-
sion [10, 11, 15, 20, 27]. The process of crafting such adversarial
examples 𝑥 + 𝛿 can be formulated as follows:

argmax
|𝛿 | ≤𝜀

L(𝜃, 𝑥 + 𝛿,𝑦),

where 𝑥 is the test input, 𝜃 is the model parameters of a target
model 𝑓 , 𝑦 is the oracle label, L is the loss function, and 𝜖 is the
maximum perturbation bound to keep the human-imperceptibility.
We consider the PGD and DAG attacks because PGD is the strongest
known adversarial attack, while DAG is used in the prior studies [25,
26] to evaluate adversarial robustness of their detectors.

PGD. Projected gradient descent (PGD) [27] is a representative
algorithm for crafting adversarial examples, described as follows:

𝑥 (𝑡+1) = Π𝜖

(
𝑥𝑡 + 𝛼 · sign

(
∇𝑥L

(
𝜃, 𝑥𝑡 , 𝑦)

))
,

where 𝑥𝑡 is the adversarial example step 𝑡 , 𝛼 is the step size, and
Π𝜖 is the projection operator that forces the constraints on the
perturbation size 𝛿 . The perturbation size is bounded by the ℓ𝑝 -
norm, and the typical choice of 𝑝 is in {1, 2,∞}.

DAG. A dense adversary generation (DAG) is an adversarial-
example crafting algorithm designed to alter the classification re-
sult of an object detector [37]. The object detector consists of two
components: a component for semantic segmentation and an object
classifier. Given an image, the segmentation component identifies
proposals with rectangular areas containing objects, and the clas-
sifier outputs the class among 𝑁 target objects for each proposal.
DAG attack crafts 𝛿 such that, when 𝛿 is added to an input 𝑥 , it
decreases the confidence score of the correct label while increas-
ing that of the incorrect target label. The objective for crafting an
adversarial example 𝑥 + 𝛿 is as follows:

L(𝜃, 𝑥 + 𝛿,𝑦) =
𝑁∑︁
𝑖=1

[
𝑓𝑦𝑖 (𝑥 + 𝛿, 𝑡𝑖 ) − 𝑓𝑦′

𝑖
(𝑥 + 𝛿, 𝑡𝑖 )

]
,

where 𝑦′
𝑖
is the incorrect label an adversary chooses, 𝑦𝑖 is the cor-

rect label, 𝑡𝑖 is each target object for 𝑥 + 𝛿 , and 𝑓𝑦𝑖 (𝑥 + 𝛿, 𝑡𝑖 ) is a
confidence score of the class 𝑦𝑖 for 𝑡𝑖 . To generate the adversarial
perturbation, the attacker generates proposals more densely and
chooses ‘positive’ ones: those where the intersection over unions
(IoU) matches the ground truth among the objects identified by
semantic segmentation component. DAG also chooses the target
label 𝑦′

𝑖
, different from the original label 𝑦𝑖 for all positive propos-

als. The attack finally employs PGD to optimize the objective L.

593



ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam Eunjin Roh, Sungwoo Jeon, Sooel Son, and Sanghyun Hong

Minimizing L involves ensuring that every object an adversary
target is misclassified into the incorrect target label 𝑦′

𝑖
.

Our work adapts both PGD and DAG attacks to test the actual
robustness of PhishIntention and DynaPhish, a state-of-the-art
reference-based phishing detector. We propose a series of non-
trivial adaptations to these algorithms: the design of new attack
objectives (§4), the conversion of perturbations in floating-point
numbers into integer-valued pixels (§5), and their extension to
Expectation over Transformations [13, 22] (§5).

3 Existing Robustness Evaluation
Now we start by identifying common issues in evaluating the ro-
bustness of reference-based phishing detectors, particularly those
employing neural networks. We first adapt the threat model com-
monly used in prior research on adversarial attacks. We then cate-
gorize three common mistakes we identify from previous studies
that lead to limited evaluation of adversarial robustness.

3.1 Threat Model
We consider an adversary who aims to evade a target reference-
based phishing detector. The adversary’s goal is to cause the classi-
fiers in the target detector to misclassify the input website, leading
the detector to incorrectly identify a phishing website as benign.
Considering the nature of a phishing campaign, the adversary is
required to use a phishing logo that is visually near-identical to
an authentic service vendor logos (e.g., Google and PayPal). We
note that our adversary differs from the evasive attackers studied
in prior research on phishing blocklist evasion [7, 29, 30, 41, 42]
(e.g., attackers who exploit cloaking or URL redirection).

Capabilities. We assume that the adversary leverages small per-
turbations to cause misclassifications of their phishing website.
For this, the adversary can manipulate their phishing website by
changing the web page layout and introducing perturbations into
their phishing logo and the display area. For example, they can
inject adversarial perturbations into a logo image or use iframe
components to overlay them on top of the web page rendering
area. In a few cases, the perturbations applied by our adversary
may be visually-perceptible. But since phishing detectors typically
operate automatically with minimal human intervention, the pres-
ence of human-perceptible perturbations does not pose a significant
issue. Moreover, we assume that the attacker can employ further
techniques to evade human detection, such as making iframe com-
ponents containing the perturbations disappear shortly after the
phishing website is rendered. It ensures that screenshots are taken
while humans remain unaware of the evasive perturbations.

Knowledge. Our objective is to audit adversarial robustness of the
state-of-the-art reference-based phishing detector. We thus mainly
assume a white-box adversary who knows the internals of phishing
detectors, such as the detection pipeline, model architectures, and
model parameters, such as weights and biases. We also test black-
box attacks, such as logo masking, shown in prior work [3] as
techniques that practical adversaries are likely to employ.

3.2 Undesirable Practices in Prior Work
We conduct an extensive review of the literature on reference-based
phishing detectors. We find undesirable practices in evaluating
adversarial robustness, especially those warned by prior work on
adversarial attacks [4, 10]. We categorize them into three: defenses
leveraging gradient masking (P1), evaluating with weak attacks (P2),
and no end-to-end evaluation (P3). Table 1 shows the categorization.

Table 1: Summary of common issues in evaluating the adver-
sarial robustness, found in prior work on phishing detectors.

Detector Problems

P1 (Masking) P2 (Weak attacks) P3 (No E2E)

VisualPhishNet [1] - ✓ -
Phishpedia [24] ✓ ✓ ✓
PhishIntention [25] ✓ ✓ ✓
DynaPhish [26] ✓ - ✓

P1. Gradient masking. As phishing detectors will be deployed in
adversarial settings, recent work [24–26] evaluates the robustness
of these detectors under adversarial pressure and proposes defenses
to mitigate such risks. These detectors adapt a commonly used
activation function, ReLU, 𝑓 (𝑥) =𝑚𝑎𝑥 (0, 𝑥) to StepReLU, 𝑓 (𝑥) =
𝑚𝑎𝑥 (0, 𝛼 ·

⌈
𝑥
𝛼

⌉
). StepReLU quantizes the activation values, making

it difficult for an adversary to compute the input gradients through
back-propagation. However, the effectiveness of such gradient-
masking relies on the assumption that the attacker is not aware of
its presence. If the attacker knows that a model uses StepReLU, they
can develop adaptive attacks that bypass this defense mechanism.
Prior work [4] pointed out that obfuscating gradient (e.g., gradient
masking) offer a false sense of security. Sophisticated adversaries
can circumvent the obfuscation, leaving the phishing detectors
vulnerable despite them seemingly robust to adversarial attacks.

P2. Using weak attacks. Prior work [1, 24, 25] evaluates adver-
sarial robustness using weak attacks. Liu et al. [25], for example,
uses the DAG attack but with an incorrect implementation; our
correct implementation of the DAG attack shows zero robustness,
in contrast to their results indicating some robustness. We highlight
these implementation differences in Appendix A.2. The evaluation
often contains attacks like FGSM [15] or DeepFool [28], which are
known to be weaker than more recent attacks such as C&W [10] or
PGD [27]. Moreover, most prior work does not consider an adaptive
adversary who can either design a crafting objective tailored to
a target model or is aware of the defenses deployed to the target.
This oversight can lead to an underestimation of the model’s vul-
nerabilities, as adaptive adversaries are likely to be more effective
in bypassing defenses and fooling the phishing detectors [5, 19].

P3. No end-to-end attacks. DynaPhish’s design principle is to
make the detection work in adversarial settings by incorporating
components that keep the reference list up-to-date. However, the
robustness evaluation only focuses on the components employing
neural networks, while their end-to-end (E2E) detection capability
has remained unknown. This limited scope of evaluation fails to

594



Evaluating Robustness of Reference-based Phishing Detectors ASIA CCS ’25, August 25–29, 2025, Hanoi, Vietnam

provide a comprehensive understanding of how user-facing de-
fense systems will perform under adversarial pressure, potentially
overlooking the difficulty of adversaries fooling a target.

4 Our Adversarial Attacks
We first follow the common practices in the original studies of
PhishIntention and DynaPhish on evaluating adversarial robust-
ness: individually testing the robustness of key components. Our
evaluation focuses on their three key components: the object detec-
tor, the OCR-Siamese model, and the CRP classifier.

4.1 Evading Object Detection
Most phishing detectors employ object detectors, such as Faster
R-CNN [32], to identify various components in a website screen-
shot, including logos, buttons, or forms. Because the subsequent
workflow heavily depends on the identified objects, we first test the
robustness of detectors against evasion attacks specifically designed
to fool these object detectors. We design our attack to address two
common problems, P1 and P2, as outlined below.
• P1:We modify the DAG attack, to employ the backward pass
differentiable approximation (BPDA) [4]. This technique is typi-
cally used to break gradient masking defenses, such as StepReLU.
BPDA approximates gradients through non-differentiable com-
ponents, enabling the attack to effectively bypass defenses that
rely on gradient masking and thereby evaluate the true robust-
ness of the object detectors.
• P2:The original DAG attack aims to causemisclassification of an
object into a target class as well as misidentification of the object
area in an image. However, in the context of phishing detection,
we found that the attack is much stronger and more effective
when they make it impossible for a target object detector to
identify any object from an input image. To this end, we develop
a new objective function designed to achieve this goal.

Object-removal attack. We first use the ReLU activation function
during the backward pass as a differentiable proxy for StepReLU.
We then devise the objective function for crafting adversarial per-
turbations to remove objects from being detected, as follows:

argmin
𝛿

𝑁∑︁
𝑖=1

∑︁
𝑐∈𝐶

𝑓𝑐 (𝑥 + 𝛿, 𝑡𝑖 ),

where 𝐶 is the set of target object classes that the attacker aims to
evade detection for. This objective is designed to minimize confi-
dence scores across all classes in 𝐶 for each target object 𝑡𝑖 . Unlike
the original DAG, we optimize all proposals generated by semantic
segmentation because the goal is to erase all detected target class
objects regardless of the position of the object.

Methodology. We randomly choose 901 website screenshots from
the validation dataset of the object detector provided by Liu et al.
[25]. For each screenshot, we run the object-removal attack, which
aims to evade all class outputs. We measure the attack success when
the number of objects that a detector identifies from a screenshot
becomes zero. We vary the number of attack iterations in [100, 800].
The attack hyper-parameter 𝛾 is set to 0.5.

Table 2: Result from object-removal attacks. We show the
increase in attack success overmultiple attack iterations. The
perturbations are added to the entire screenshots. We set the
non-maximum suppression threshold of the region proposal
network to 0.9 and the perturbation weight 𝛾 to 0.5.

Iteration 𝑁 # Screenshots No object

No attack 901 0%

100 472 47.6%
200 162 82.0%
400 47 94.8%
600 49 94.6%
800 40 95.6%

Results. Table 2 summarizes our attack results. After running
400 attack iterations, our attack achieves a success rate of 94.8%,
rendering the object detector ineffective most of the time. We fur-
ther increase the attack iterations, but there is a marginal increase
in attack success (95.6%). We want to highlight that, in contrast
to the results from the original study, our work demonstrates that
StepReLU does not provide any adversarial robustness to the ob-
ject detector. Figure 2 illustrates a successful attack: the left figure
shows the detector identifying multiple objects in a screenshot,
while the right figure demonstrates our adversarial perturbation
causing the detector to fail to identify any objects. Replacing the
backward propagation function in BPDA from the default (𝑦 = 𝑥)
to ReLU is sufficient to break the robustness of the object detector.

4.2 Evading Logo Classification
The next step is typically brand recognition. Recent detectors, such
as PhishIntention and DynaPhish, propose the OCR-aided brand
recognition model (henceforth referred to as the OCR-Siamese
model), which employs a two-step detection process. The first step
is to extract visual and textual features from a logo using ResNetV2-
50 [18, 21] and the OCR model [33], respectively. Then they feed
these features into fully-connected layers to extract a single, consol-
idated feature. The detectors then compare the feature computed
from logos in a screenshot with the pre-computed features of vari-
ous known-benign logos in the reference list. They run this compar-
ison only with the top-3 features that are closest to those computed
on the identified logo. Here, we develop an adversarial attack to
tackle the two common problems in prior work, P1 and P2, thereby
testing the true robustness of this detection process.
• P1: Our attack operates under the assumption that StepReLU
activations in a model can be replaced with ReLU. When at-
tacking, we consider adversarial perturbations crafted on the
model with this adaptation against the original model with the
StepReLU defense. We surprisingly find that this adaptation
does not guarantee robustness against our attack.
• P2: Unfortunately we could not find how the original study [25]
adapts existing adversarial attacks to the OCR-Siamese model
from their paper and source code. However, we hypothesize that
the attacks used in prior work are weaker than our proposed
attack. Similar to our object-removal attack, we develop a new
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Figure 2: An example demonstrating the success of the object-removal attack. The left shows the detector identifies objects in a
clean screenshot, while the right shows the detector failing to identify as we add our adversarial perturbations.

objective designed to reduce the similarity between the features
computed from identified logos and those in the reference list.

Evasion attack. To bypass the OCR-Siamses model, we design
the objective function for crafting adversarial examples as follows:

argmin
|𝛿 | ≤𝜖

𝑁∑︁
𝑖=1

𝑐𝑜𝑠 (𝑓 (𝑥 + 𝛿), 𝑓 (𝑥𝑖 ))

where 𝑓 is the OCR-Siamese model, 𝑥 + 𝛿 is an adversarial example,
𝑥𝑖 is the 𝑖-th logo in our reference list, 𝑁 is the cardinality of the
reference list (i.e., 3061), and 𝑐𝑜𝑠 (·) is the cosine similarity function.
Our objective is designed to minimize cosine similarity scores be-
tween the features across all the logos 𝑥𝑖 in the reference list. We
run our attack using the PGD algorithm [27] as our optimization
with an ℓ∞-norm of 16 pixels to craft adversarial examples.

Methodology. We evaluate our attack on the 30k phishing web-
sites collected and shared by Liu et al. [25]. For each website screen-
shot, we run our evasion attack and measure whether there is a
match between the identified logo and the brand in our reference
list. If no match is found, we consider it an attack success. We use
the same threshold of 0.87 in the cosine similarity score between
two features as the original study when determining a match be-
tween the two logos. To set the attack hyper-parameters, we run
our attack on 100 randomly selected screenshots with attack itera-
tions ranging from 100–300. As shown in our initial investigation
in Table 3, we observe that increasing attack iterations beyond 150
provides no additional benefit. We therefore set 𝑁 to 150.

Table 3: Result of out evasion attack on OCR-Siamese model.
We use different attack iterations, ranging from 100–300.

Iteration 𝑁
Before alignment After alignment

Phish Benign Phish Benign

No attack 88 12 89 11

100 0 100 27 72
150 0 100 16 84
200 0 100 16 84
300 0 100 16 84

Table 4: Results of evasion attack on the OCR-Siamese model.
We add human-imperceptible adversarial perturbations to
phishing website screenshots. We use 150 attack iterations,
and the perturbations are bounded to ℓ∞-norm of 16 pixels.

Iteration 𝑁 # Screenshots Before alignment After alignment

Phishing Benign Recall Phishing Benign Recall

No attack 29,496 26,436 3,060 0.90 25,753 3,743 0.87
Ours 28,856 670 28,186 0.02 3,486 25,370 0.12

Results. Table 4 summarizes our results. PhishIntention (that is
also used as a module in DynaPhish) runs the detection in two steps:
It first compares the feature computed from the logo in a screenshot
with the pre-computed features in the reference list. If the detector
fails to identify the logo’s brand, they align the resolution of the
identified logo with the logos in the reference list and rerun the
comparison. We denote the attack success in the first step as “Before
alignment" and in the final result as “After alignment".

Without any adversarial perturbations, out of 29,496 phishing
websites, 25,753 (87.3%) websites are identified as phishing after
the second step. The remaining 3,743 websites (12.7%) are classified
as benign. Logos are not detected in 640 websites, which are also
classified as benign. It is interesting to observe that the detection is
more successful, identifying 26,436 websites (89.6%) as phishing.

Under our evasion attack, out of 28,856 phishing websites that
have logos, 25,370 websites are detected as benign after the second
step, demonstrating an attack success of 87.9%. Only 12.1% (3,486
websites) are correctly classified as phishing under our attack. The
alignment slightly helps the detection. Before the alignment, 97.7%
phishing websites are classified as benign, while 2.3% are still de-
tected as phishing. Our results are in contrast to the findings in the
original study, which claimed that StepReLU completely mitigates
adversarial attacks. To understand this gap, we further analyze
when our attacks become successful/unsuccessful in §6.

4.3 Evading CRP Classification
If the object detector cannot find any logos, the detectors perform
the last step: web interaction. The key component of this module
is the credential-requiring page (CRP) classifier. Given a website
screenshot, the CRP classifier takes the detected bounding boxes
and their class predictions from the object detector as input and
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identifies whether the website asks for user credentials or not. If
the classifier identifies that the website is requesting the user’s
login credentials, the web interaction module provides random
credentials to see if the website allows a login. Otherwise, the
module finds links that potentially transit to credential-requesting
pages. The module then runs the same step with the CRP classifier
to determine if a login can be achieved with random credentials. We
develop an attack to test how robust the CRP classifier is against
bypassing attempts. Our attack exploits the common problem: P1.
• P1: The same StepReLU is used by the prior work, when testing
their robustness to existing adversarial attacks.We assumed that
the StepReLU activation function is used in the model. We craft
adversarial perturbations on the model with this adaptation.

Methodology. We evaluate by running our attack optimizing with
the PGD [27] algorithm on the CRP classifier, substituting StepReLU
with ReLU. We use the same 30k phishing website dataset used
in §4.2. We consider an attack successful if the classifier fails to
identify a screenshot with adversarial perturbation as a CRP. We
set 𝑁 to 30, as this was found to be the most effective according to
Table 5, and the perturbation bound to 16 pixels in ℓ∞-norm.

Table 5: Result of out evasion attack on the CRP classification
model. We perform our attack with 10–35 iterations.

Iteration 𝑁 Non-CRP CRP

No attack 0 100

10 49 51
15 66 34
20 77 23
25 83 17
30 88 12
35 87 13

Table 6: Result of the evasion attack on theCRP classifier. The
same model is used in PhishIntention and the DynaPhish’s
Web Interaction module. We use 30 attack iterations and the
perturbations are bounded to ℓ∞-norm of 16 pixels.

Iteration 𝑁 Not a CRP CRP

No attack - 122 (0.4%) 29,374 (99.6%)
PGD 30 24,802 (84.1%) 4,694 (15.9%)

Results. Table 6 summarizes our results. We attack the CRP clas-
sifier model employed by the web interaction module in PhishInten-
tion and DynaPhish. Before the attack, 122 out of 29,496 phishing
websites are classified as non-CRP websites (0.4%), while 29,374 are
classified as CRP websites (99.6%). Under the iteration of 30, the
model classifies 24,802 websites as non-CRP websites, showing an
attack success of 84.1%. In contrast to the results demonstrated by
the original study, our findings show that the CRP classifier is not
robust to adversarial attacks, even in the presence of StepReLU.

Figure 3: An example illustrating the weakness of the CRP
classifier. Both screenshots are classified as CRP. We take the
bounding boxes from the upper screenshot and apply them
only to a blank image with the same resolution.

We further analyze the factors contributing to the susceptibil-
ity of the CRP classifier to adversarial attacks. As observed from
our object-removal attack (§4.1), the adversarial perturbations can
make it difficult for an object detector to identify several objects in
a screenshot. The disappearance of these objects from the input for
the CRP classifier is not particularly a problem in detection. How-
ever, we find that the classifier heavily relies on a specific pattern
among the objects identified in the scene. Figure 3 illustrates this
weakness. The upper figure shows a screenshot where the classifier
correctly identifies it as a CRP. The bounding boxes are located
around objects such as the logo, the forms requesting user account
information, and the login button.We then remove the backgrounds
and keep only the bounding boxes, as shown in the lower figure.
We find that this screenshot, with only the bounding boxes, is still
classified as a CRP. This implies that the classifier depends more on
the location of the bounding boxes rather than “what these bound-
ing boxes are." If an adversary successfully removes a few bounding
boxes from the patterns commonly observed in login forms, they
may easily bypass the CRP classifier. Inspired by this observation,
we show the effectiveness of our object-removal attack in bypassing
the CRP classifier in §5.7, especially in end-to-end settings. Our
results suggest that while bounding box locations are sufficient
to identify the CRP in benign settings, this heavy reliance can be
exploited by adversaries for evasion. We leave further exploration
of strategies to mitigate this reliance as future work.
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5 Attacks on End-to-End Detection
In the previous section, we presented evasion attacks on each of the
three key components of recent reference-based phishing detectors.
We now turn our attention to how an adversary can bypass the
entire detection system that combines these key components in an
end-to-end (E2E) manner. We present three E2E attacks and use
them to evaluate the detectors holistically.

5.1 Attack Overview
Figure 4 illustrates how our E2E attacks are expected to work. Our
first attack (no-object attack, whose workflow is shown in red)
aims to fool the object detector by making it difficult to recognize
any objects in a website screenshot. This detection failure can
potentially impact the functionality of the subsequent CRP classifier
and cause the misclassification of a phishing website as benign.

Our second attack (triple-jump attack, whose workflow is shown
in blue) bypasses three mechanisms. First, the object detector recog-
nizes a logo in a screenshot. Next, the attack fools the OCR-Siamese
model into classifying the identified logo as a different, perceptually
dissimilar logo or making the model impossible to find the match-
ing logo. The attack is finally designed to bypass the CRP classifier,
ensuring it is not detected as a credential-requiring page.

Our third attack (logo masking attack, in green) operates in a
black-box manner and partially masks the logo in the screenshot.
This type of attack is increasingly common, as adversaries seek to
simplify their approach with little or no knowledge of the target
detector [3]. The process begins with the object detector locating
the logo in the screenshot. The logo is then partially masked with
white in a random location and replaced with the masked version.
This modification can disrupt the OCR-Siamese model, making it
difficult for the model to find a matching logo in the reference data.

5.2 Challenges in E2E Evaluation
We identify challenges in end-to-end evaluation against reference-
based phishing detectors and show how we address them.

Overlaying adversarial perturbations. To apply adversarial per-
turbation on a real-world phishing website, we leverage HTML
features, such as iframes. Using such features, it is easy for an
adversary to overlay the perturbation onto a website at a lower
cost than directly manipulating all the components in the web-
site’s HTML code. Because our gradient-based attacks iteratively
minimize (or maximize) the attack objectives, we incorporate the
following additional overlaying steps in each iteration:

𝑥 + 𝛿 = 𝑥 ∗ (1 − 𝛼) + 𝛿 ∗ 𝛼,

where 𝛼 is the blending factor we use for overlaying, and 𝑥, 𝛿 are the
original screenshot and the perturbation at each step, respectively.
At each iteration, we additionally clip and round the perturbation
𝛿 to the nearest pixel values, which are integers between 0–255.

Incorporating data augmentations. Phishing detectors, such as
PhishIntention, often resize a screenshot to various resolutions and
perform detection. Under such data augmentations, adversarial at-
tacks become less effective [34] than those operating in the floating
point space, and so do our attacks. To address this challenge, in
the optimization process, we convert the resolution of an input

screenshot to the resolutions a detector will examine. We then up-
sample the gradients to the original resolution of the screenshot
using the Resize() function with bilinear interpolation supported
by PyTorch library. This adaptation can be viewed as a simplified
form of Expectation over Transformation (EoT), as proposed in
prior work [13, 22]. It is worth noting that this adaptation can be
extended to include additional data augmentation methods. We
leave the exploration of such generalizations as future work.

Practicality of the experimental setup. Real-world adversaries
often lack complete knowledge of the target detector. Our attacks
are designed to show that evasion attacks can remain effective even
when the attacker lacks full knowledge of the target detectors. Our
first two attacks—No Object and Triple-Jump attacks—only require
the full knowledge of only specific components. For example, the
No Object attack assumes the knowledge of the object detector,
such as Fast R-CNN, which is publicly available on the Internet.
The Logo Masking attack does not require any knowledge.

5.3 Experimental Setup
An end-to-end evaluation of recent phishing detectors, such as
DynaPhish, requires actual phishing websites hosted under their
original URLs. Because these phishing websites have already be-
come inactive, this is not feasible in our settings. We thus exclude
the following detection processes from our evaluation:
• CRP transition: In the web interaction module, DynaPhish
first checks whether the current website is a CRP. If not, the
module searches for buttons or hyperlinks that will redirect a
user to a CRP. Because we do not have the HTML code for the
redirected websites, we run our evasion attacks on CRPs.
• Credential verification: The same module automatically ex-
amines whether a CRP runs verification of user credentials (such
as username and/or password). If the website allows a login with
a random credential, the module marks the website as phishing.
We assume the process will always be successful in any CRPs.

This enables us to provide a conservative estimate of evasion attack
success since we do not account for attack success resulting from
the failures in the CRP transition or credential verification steps.

Metrics. Wemeasure attack success as the percentage of phishing
websites misclassified as benign after perturbations are applied.
Because our dataset for evaluating end-to-end attacks consists only
of phishing websites, attack success can also be interpreted as recall.

5.4 No-object E2E Attack
Methodology. We run our object-removal attack in an E2E man-

ner. We evaluate on 5k phishing website randomly chosen from the
30k phishing websites [25]. We first craft an adversarial perturba-
tion for each screenshot and store it as a .png file. We then load
each file and overlay to the actual website screenshot.

Results. Table 7 summarizes the results of the no-object attack.
When processing the screenshot image, PhishIntention and Dy-
naPhish resize the image to the resolution the model receives as
input. Under the condition that the input screenshot image is re-
sized as the model’s resolution, 4,895 out of 5,000 phishing websites
are classified as benign. We observe a significant decrease in recall,
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Figure 4: Illustration of how our end-to-end attacks render the key components of PhishIntention [25] and DynaPhish [26],
ineffective. The red, blue, and green lines represent the workflow of our first, second, and third attacks respectively.

Table 7: Results of no-object E2E attack on DynaPhish. We
set an overlay factor to 0.2.

E2E Attacks Phishing Benign Recall

None 3,812 1,188 0.76
No Object (overlay) 105 4,895 0.02
No Object (overlay and upsampling) 174 4,826 0.03

dropping from 0.76 to 0.02. When we use the input screenshot and
the perturbation whose resolution has been restored to the original
screenshot size (third row in Table 7), 4,826 out of 5,000 phishing
websites are classified as benign. We show a reduced recall, drop-
ping to 0.03, which is slightly higher than the previous result that
only considers overlaying. This is because resizing the perturba-
tion, in which the original size will be the model’s resolution, to
the size of the original screenshot image can cause an unintended
adjustment to the perturbation.

5.5 Triple-jump E2E Attack
Methodology. We next adapt our component-wise attacks for

E2E evaluation and propose Triple-jump attack. We add the two
objectives that we use for evading the OCR-Siamese and CRP clas-
sification models and craft the adversarial perturbations. We run
our Triple-jump attack on randomly-chosen 2,000 websites.

Table 8: Results of Triple-jump E2E attack on DynaPhish. We
set an overlay factor to 0.5.

E2E Attacks Phishing Benign Recall

No attack 1,554 446 0.78
Triple-jump 654 1,346 0.33

Results. We show the results of our Triple-jump attack in Ta-
ble 8. Out of the 2,000 phishing websites we manipulate, DynaPhish
identifies 1,346 as benign, showing an attack success rate of 67.3%.
Additionally, the recall dropped significantly from 0.78 to 0.33. Com-
pared to the scenario where we directly attack the OCR-Siamese
(§4.2) or the CRP classification model (§4.3), the attack success

rate is decreased by 21–32%. However, we see the attack success
rate is still high, implying that an adversary with the objective of
bypassing automated phishing detection (e.g., DynaPhish) will be
successful in real-world deployment settings.

5.6 Logo Masking E2E Attack
Methodology. We lastly test a logo masking attack that partially

obscures the logo in a screenshot, targeting the OCR-Siamese model
in a more straightforward and cost-effective manner while visually
easier to identify the attack artifacts. The masking area is randomly
selected, with sizes tested at 1

6 ,
1
4 ,

1
3 , and

1
2 of the original logo

dimensions. The width and height of the masking area, denoted as
𝑀𝑤 and𝑀ℎ are computed as follows:

𝑀𝑤 =

⌊
𝐿𝑤

𝑤

⌋
and𝑀ℎ =

⌊
𝐿ℎ

ℎ

⌋
where 𝐿𝑤 and 𝐿ℎ are the width and height of the original logo,
respectively. The values of𝑤 and ℎ are integers selected to satify
the condition 𝑤 × ℎ ∈ {2, 3, 4, 6}. Our attack was evaluated on a
randomly chosen set of 1,963 phishing websites. This dataset is the
same as that used in the Triple-jump attack experiment, excluding
37 websites where the object detector failed to detect the logo.

Table 9: Results of the logomasking E2E attack onDynaPhish.
The size of themasking area is determined by the formula 5.6,
with its location randomly selected.

Masked area

𝑤 × ℎ 𝑤 ℎ Phishing Benign Recall

No Masking 1,554 409 0.79

6 3 2 1,528 435 0.78
2 3 1,533 430 0.78

4 2 2 1,498 465 0.76

3 3 1 1,341 622 0.68
1 3 1,500 463 0.76

2 2 1 945 1,018 0.48
1 2 1,448 515 0.74
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Results. Table 9 summarizes the result of the logo masking attack
experiment. The overall attack success rate was slightly higher than
the ground truth of 20.8%, with an average success rate of 29.2%.
The highest success rate was observed when the masking area
covered half of the logo, with 𝑤 = 2 and ℎ = 1, achieving a 51.9%
success rate (1,018 out of 1,963).

We further analyze the masked logos that successfully bypassed
DynaPhish. Figure 5 illustrates the masked logos that are classified
as either phishing or benign. As shown in Table 9, we observe that
the success rate is higher when𝑤 is greater than ℎ. Moreover, the
attack is more likely to succeed when the masked logo consists of a
single icon without any accompanying brand name or explanatory
text (see Figure 5b). When the masking area obscures portions of
the logo text across multiple letters, rather than fully concealing a
single random letter, the detector is more likely to misclassify the
input website as benign (as shown in Figure 5c).

(a) DHL logo with masking applied at 𝑤 = 2, ℎ = 3, and 𝑤 = 3, ℎ =

2, respectively. The website with the logo on the left is detected as
phishing, while the website with the logo on the right is detected as
benign. Websites where the logo masking has 𝑤 > ℎ are more likely
to be classified as benign.

(b) Outlook, AT&T, and Facebook logos with masking applied at 𝑤 = 3
and ℎ = 2. All three websites featuring these logos are detected as
benign. Websites with icon-only logos are more likely to be classified
as benign.

(c) DHL logo with masking applied at 𝑤 = 1, ℎ = 3, and 𝑤 = 3, ℎ =

1, respectively. The website with the logo on the left is detected as
phishing, while the website with the logo on the right is detected as
benign. Websites where the logo masking partially obscures multiple
letters of the text are more likely to be classified as benign compared
to those where a single letter is fully covered.

Figure 5: Logo images with randommasking. The logo on the
left in Figure 5a and Figure 5c is detected as phishing, while
the logo on the right in both figures is detected as benign. All
three logos in Figure 5b are detected as benign.

5.7 Impact on Additional Mechanisms
Brand Knowledge Expansion. DynaPhish employs the BrandKnowl-

edge Expansion module to keep the reference list up-to-date. Once
DynaPhish fails to find a match between the identified logo and

those in the reference list, the module runs Google’s OCR and Logo
detection models to identify the brand name. Using the brand name,
they use it as a keyword for Google search and download a screen-
shot of the first website appearing in the search results. The module
then crops the logo from the screenshot and stores the logo and its
brand name in the reference list. We test if the Brand Knowledge
Expansion module can help render our attacks ineffective.

We run our attacks tailored to evading the OCR-Siamese model
(§4.2) on the Brand Knowledge Expansion module. Table 10 sum-
marizes our results. Without the module, the attack success rate is
87.9% (i.e., 25,370 websites are detected as benign out of 28,856 in
total). When we add the module, the attack success rate becomes
84.2% and the recall improves to 0.16. We observe that there is only
a marginal decrease (3.7%) in the attack success rate and a modest
increase in the recall (0.04). This implies that the newly added mech-
anism, Brand Knowledge Expansion, does not particularly enhance
the detection performance, especially in adversarial settings.

Table 10: Results of our attack on the Brand Knowledge Ex-
pansion (BKE) module. We use the attack presented in §4.2.

Iteration 𝑁 Phishing Benign Recall

PhishIntention 150 3,486 25,370 0.12
PhishIntention with BKE 150 4,553 24,303 0.16

We analyze the factors attributing to our observation. We find
that the Brand Knowledge Expansion does not necessarily identify
the correct logo from Google search. For instance, the module per-
forms a Google search for the name of a small bank. But the search
returns a large company’s logo as the company collaboratively
runs an event with the small bank. What is eventually stored in the
reference list for the brand name is not the bank’s logo, but the logo
of the large company. Even if we run the OCR-Siamese detection
with the updated reference list, the result will be still no match.

Web Interaction. The Web Interaction module heavily relies on
the results from the object detector. It runs the CRP classification
model with the objects identified by the object detector model. We
thus ask: Can we render the module ineffective by suppressing the
identification of objects in a screenshot? To answer this question, we
select 384 screenshots with a layout from the validation dataset of
the object detector and CRP classifier [25], all of which were labeled
as CRP.We then craft the adversarial perturbations to remove object
classes gradually from detection and measure the attack success as
the performance of the target CRP classifier.

Table 11 shows our results on removing specific objects. We
observe that the Logo class is not critical in the CRP classification:
even without detecting logos, the classifier correctly detects 372
as CRP out of 384 websites. We find that the Input and Button
classes are important. Without the both, the classifier is only able
to detect 144 websites as CRPs. The Block objects are less critical
for detection. Removing the block objects is only able to flip the
classifier’s decision for a single website. The last row shows that
our adversary can create perturbations to remove all objects from
detection, rendering the CRP classification completely ineffective.

We further run our attack that removes all the objects on 10k
phishing webpage screenshots classified as CRPs. Our attack can
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Table 11: Results of object-removal attack remove specific
classes. Wemeasure the attack’s impact on the CRP classifier.
✗indicates the object class we optimize to remove.

Class removed Detection

Logo Input Button Label Block CRP Non-CRP Recall

376 8 0.98
✗ 372 12 0.97
✗ ✗ ✗ 144 240 0.38
✗ ✗ ✗ ✗ 1 383 0.00
✗ ✗ ✗ ✗ ✗ 0 384 0.00

Figure 6: Illustrating two screenshots with perturbation
where our attack fails to evade the CRP classifier even if
the object detector fails to identify any object in the images.

evade the CRP classification with a success rate of 99.8% (9,975
of them are classified as non-CRPs). Our attack works on most
screenshots, but there are 25 cases where the CRP classifier identi-
fies the screenshots as CRPs. These cases are interesting because,
although we made all objects disappear from the screenshots, the
CRP classifier still correctly identified them.We showcase two cases
in Figure 6. We hypothesize that in most cases, the CRP classifier
focuses on the object layout. But there are a few cases where the
model focuses on patterns in the backgrounds.

6 Discussion
We now discuss the effectiveness of potential countermeasures
and future work directions for safeguarding Internet users. In the
context of machine learning, extensive studies have explored de-
fenses against adversarial attacks [9, 12, 27, 31, 39]. However, it

remains unclear whether those defenses are effective in phishing
detection. Prior work particularly discusses the shortcomings of ex-
isting defenses, such as performance degradation or computational
overheads, which, when integrated into the phishing detectors
processing millions of suspicious websites daily, could increase
the operational overhead substantially (Please refer to the detailed
discussion in Appendix A.3). We thus discuss two lightweight de-
fensive strategies to minimize the aforementioned shortcomings.

6.1 Designing Robust Detectors
Because our attacks leverage human-imperceptible perturbations,
we test if one can remove these perturbations while preserving
detection performance. We focus on certified defenses proposed
by Cohen et al. [12], which leverage randomized smoothing tech-
niques. Recent work [9] shows that one can reduce its compu-
tational overhead by selecting a randomized smoothing method
wisely (e.g., using off-the-shelf diffusion denoisingmodels). Inspired
by this prior work, we employ a lightweight randomized smooth-
ing technique: Gaussian blurring. This technique can be integrated
into existing phishing detectors by applying Gaussian blurring to
screenshots before feeding them into the detector.

Methodology. We test 25,753 phishing logos with adversarial
perturbations. We denoise them using Gaussian blur. We implement
the denoiser with OpenCV and set the filter size to (3, 3). We feed
the denoised logos and measure the reduction in evasion success.

Table 12: Detection results after denoising in the E2E setting.

Iteration 𝑁 Kernel Size Phishing Benign

Perturbed 150 - 383 (1.5%) 25,370 (98.5%)
Denoised 150 (3, 3) 18,771 (72.9%) 6,982 (27.1%)

Results. Table 12 shows the effectiveness of our denoising. Be-
fore denoising, the attack success rate is 98.5%: only 383 logos in
our 26k screenshots are detected as phishing. However, when we
apply denoising, the attack success significantly drops to 27.1%.
Considering that DynaPhish classifies 87.3% screenshots without
perturbations as phishing, our cost-effective denoising is slightly
below (∼14.4% below) under our evasion attacks.

Table 13: Performance of the object detector after denoising.

Attack Defense Kernel size mAP No object

No attack No defense - 56.8 -
Denoising (3, 3) 53.3 -

Object-removal No defense - 0.0 95.6%
Denoising (3, 3) 34.4 0.3%

We also examine the effectiveness of denoising against our object-
removal attacks.We run this evaluation on 901webpage screenshots
used in §4.1. We perturb them with 800 attack iterations. Table 13
summarizes our results. We first show that denoising does not
reduce detection performance when there is no adversary. There
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is a slight decrease in mAP from 56.8 to 53.5. Against the screen-
shots with perturbations, our denoising increases mAP from 0.0 to
34.4. The No object column shows the percentage of screenshots
where the detector fails to identify any objects. We observe that
the percentage is drastically reduced from 95.6% to 0.3%.

6.2 Designing Robust Reference Lists
In §4.2, we find that some of our attacks fail to manipulate the
OCR-Siamese model despite increased attack iterations. We focus
on these logos and analyze if there are unique characteristics that
particularly make the logos resilient to our attacks. Identifying such
characteristics can help popular brands design their logos to be
robust against adversary evasion efforts, thereby making it easier
for detectors to recognize phishing attempts using their logos.

We showcase such resilient logos in Figure 7. The left column
shows the logos successfully fooling the model, whereas the right
column shows those that do not. Across the board, we observe that
logos with symbols (which are often larger than the brand names in
text) are more vulnerable to our adversarial attacks. All logos that
fail to cause misclassification of the OCR-Siamese model has the
brand name with fonts that are easily human-perceptible, symbols
smaller than the brand names, and single-colored backgrounds. For
example, in the third row, the Runescape logo contains its brand
name adorned with a curved line, while the Rakuten logo does
not have such embellishments. In the fourth row, we also contrast
the Adobe Acrobat and PayPal logos. The Adobe logo, with its
somewhat unrelated backgrounds, is vulnerable to our adversarial
perturbations. While these brands do not consider phishing attacks
when designing their logos, we will share these interesting findings
with them. This may encourage these brands to update their logos
to a simpler format, similar to how Instagram changed their logo
from a detailed camera picture to a simpler outline version (even
if their intention is not robustifying against phishing attempts).
In summary, our results suggest that for brand logos to be robust
against evasion, they should adhere to the following design princi-
ples: (1) use simple, unembellished fonts, (2) minimize or eliminate
the use of logo icons, and (3) employ a solid, uniform background.

7 Conclusion
This paper studies the adversarial robustness of reference-based
phishing detectors, which widely used machine learning models
to automate the detection process. In contrast to the best-known
practices in the literature on adversarial attacks, we identify three
common mistakes in evaluating the adversarial robustness: gradi-
ent masking, employing weak attacks, and not conducting end-to-
end evaluations. Our work follows the best-known practices and
proposes three evasion attacks. We evaluate these attacks on state-
of-the-art phishing detectors and demonstrate that, unfortunately,
they are not as robust to adversarial attacks as previously claimed.
We analyze factors contributing to these weaknesses and discuss
potential ways to improve the resilience of detection systems.

We conclude by outlining future research directions for evalu-
ating robustness of phishing detectors deployed in practice and
designing defensive strategies against evasion efforts:
• Measuring the impact of our attacks on real-world phish-
ing detectors. A key area for future work is evaluating the

Figure 7: Examples of logos with perturbations. The logos
on the left row are the logos with similarities lower than the
threshold (Non-robust), and the logos on the right row are the
logos with similarities higher than the threshold (Robust).

robustness of real-world phishing detectors against our attacks.
This is a challenging question due to the black-box nature of
many protection methods in the real-world against Internet
threats [6]. However, we believe that because these detectors
may adapt pre-trained models publicly available on the Inter-
net, our attacks are likely to transfer and serve as a reasonable
starting point of such evaluations. We also note that any such
evaluations must be ethically sound and designed with extra
care, as highlighted in relevant work [30]. Conducting evasion
attacks on real-world detectors may have serious implications
for the safety of Internet users.
• Designing practical defenses against evasion.While coun-
termeasures against adversarial attacks have been extensively
studied, it has been unclear how compatible these proposals
with phishing detection. As shown in Sec. 6.1, approaches like
certified defenses increase the time it takes to examine a sus-
picious website. It is thus important future work on how to
balance the trade-off between defense effectiveness and op-
erational overhead. In addition, defenses could be built upon
lightweight image transformations, such as Gaussian blur we
study or JPEG compression shown in [39], particularly when
detectors take the screenshot of suspicious websites. Moreover,
it is a promising direction to develop measurable metrics and
practical guidelines for designing robust logos.
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A Appendix
A.1 OCR-Siamese Model

Figure 8: Illustration of the OCR-Siamese model’s operation.
The input is a logo image, and the output is the predicted
brand associated with the logo.

Figure 8 illustrates the detailed internal structure of the OCR-
Siamese model. The logo image is initially cropped from the original
screenshot using an object detector before being fed into the model.
The pre-trained OCR model, which is based on the ASTER architec-
ture [33], extracts text features by recognizing digits and characters.
The dimensionality of the OCR embedding matches that of the origi-
nal input logo feature. These features are then passed to the Siamese
model, which is based on the ResNetV2-50 architecture [18, 21],
where the input consists of the OCR embeddings and the original
input logo image. The Siamese model generates embeddings for
both the input logo and the predefined brand list, subsequently cal-
culating the cosine similarity between them using the dot product.
The final output is the predicted brand name and its associated sim-
ilarity score, corresponding to the logo with the highest similarity.
If all brand similarity scores fall below a predefined threshold (0.87
in our case), the detector fails to predict a brand and returns None.

A.2 Incorrect Implementation of DAG
When we ran the DAG implemented in PhishIntention [25] and
fed the generated adversarial examples back into the model, the
normal output was often restored without any adversarial effect.
Upon analyzing the code, we found that the DAG structure was
implemented as Algorithm 1 shows.

The main problem is that during each iteration, the process
of updating target_boxes overwrites the variable completely, as
shown in the code above. This causes indices excluded in previous
iterations to be ignored entirely, leading to incomplete results.

Algorithm 1: DAG Iterative Process
Data: inputs, number of iterations 𝑛_𝑖𝑡𝑒𝑟
Result: Updated adversarial labels
...
𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑜𝑥𝑒𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑎𝑏𝑒𝑙𝑠 = get_targets(batched_inputs);
for 𝑖 ← 1 to 𝑛_𝑖𝑡𝑒𝑟 do

𝑙𝑜𝑔𝑖𝑡𝑠 ← get_predictions(batched_inputs);
𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑛𝑑 ← argmax(logits) == 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑎𝑏𝑒𝑙𝑠;
...
𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑜𝑥𝑒𝑠 ← 𝑡𝑎𝑟𝑔𝑒𝑡_𝑏𝑜𝑥𝑒𝑠 [𝑎𝑐𝑡𝑖𝑣𝑒_𝑐𝑜𝑛𝑑];
...

end

A.3 Discussion about Adversarial Defenses
Currently, numerousmachine learning-based approaches have been
proposed to defend against adversarial attacks. Some approaches fo-
cus on detecting and mitigating adversarial perturbations in images
as a defense method against adversarial attacks. Pixel Deflection,
for example, randomizes pixel positions within the input image,
thereby neutralizing changes introduced by adversarial attacks [31].
Additionally, Feature Squeezing compresses the input feature space
and compares the outputs generated from the original and squeezed
inputs. Significant discrepancies between the two outputs indicate
the likelihood of adversarial characteristics in the input image [39].
However, these methods must be directly integrated into the phish-
ing detection framework, further increasing its complexity.

Also, in addition to Gaussian blur, numerous traditional and state-
of-the-art methods are employed for image denoising. Techniques
such as Mean, Median, and Wiener filters calculate pixel values
based on the neighborhood pixels, while methods like Wavelet,
Contourlet, and Curvelet Transforms provide filtering capabilities
for both stationary and non-stationary signals. These approaches
are well-established and computationally efficient. However, they
often underperform when dealing with images affected by specific
types of noise [17].

Recently, advancements in machine learning have introduced
new denoising methodologies. For instance, Zhang et al. [40] pro-
posed a deep convolutional neural network (CNN) model for image
denoising by training on paired datasets with clean and noisy im-
ages. Expanding on this, Lehtinen et al. [23] introducedNoise2Noise,
a framework enabling denoising without requiring clean reference
images during training. More recently, Xie et al. [38] developed a
denoising model based on CNNs that employs multiple score func-
tions to address diverse noise types effectively. Such methods can
be applied as a preprocessing step before integrating the images
into phishing detection frameworks.
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